-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathmaximum_subarray_sum.py
58 lines (41 loc) · 2.16 KB
/
maximum_subarray_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
'''
The max_subarray_sum function takes an array arr as input and returns the maximum sum of a
contiguous subarray in the given array.
The function initializes two variables curr_sum and max_sum to the first element of the array.
It then loops through the rest of the array starting from the second element.
Inside the loop, the function updates the curr_sum variable by adding the current element to it.
If the current sum is less than the current element, it means that starting a new subarray at this
point will result in a greater sum, so the function starts a new subarray with the current element.
The max_sum variable is then updated with the maximum value of max_sum and curr_sum.
Once the loop is finished, the function returns the max_sum variable as the maximum sum of a
contiguous subarray in the given array.
The time complexity of this algorithm is O(n), where n is the length of the input array,
since we only loop through the array once.
The space complexity is O(1), since we only use
a constant amount of extra space to store the current sum and maximum sum variables.
Example Input: arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
Example Output: 6
Explanation: The maximum subarray sum is [4, -1, 2, 1] which adds up to 6.
'''
def max_subarray_sum(arr):
"""
Returns the maximum sum of a contiguous subarray in the given array.
Parameters:
arr (list): A list of integers.
Returns:
int: The maximum sum of a contiguous subarray.
"""
# Initialize variables to keep track of the current sum and maximum sum
curr_sum = max_sum = arr[0]
# Loop through the array starting from the second element
for i in range(1, len(arr)):
# Update the current sum by adding the current element
curr_sum += arr[i]
# If the current sum is less than the current element, start a new subarray
curr_sum = max(curr_sum, arr[i])
# Update the maximum sum if the current sum is greater
max_sum = max(max_sum, curr_sum)
# Return the maximum sum
return max_sum
arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(max_subarray_sum(arr))