-
Notifications
You must be signed in to change notification settings - Fork 396
/
Copy pathmaxDepthOfBinaryTree.java
62 lines (54 loc) · 1.65 KB
/
maxDepthOfBinaryTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// Given a binary tree, find its maximum depth.
// The maximum depth is the number of nodes along the longest path from the root node down to the
//farthest leaf node.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
//TC: O(N) we visit every node at least once
//SC: in worst case where we have unbalanced tree (for example every node just has left children) will be O(N)
// however if we have balance tree it will be O(logn)
class Solution {
public int maxDepth(TreeNode root) {
if(root == null){return 0;}
else
{
int left_height = maxDepth(root.left);
int right_height = maxDepth(root.right);
return Math.max(left_height, right_height) + 1;
}
}
}
//ITERATIVE
//TC: O(N) we visit every node at least once
//SC: in worst case where we have unbalanced tree (for example every node just has left children) will be O(N)
// however if we have balance tree it will be O(logn)
public int maxDepth(TreeNode root) {
if(root == null) {
return 0;
}
Stack<TreeNode> stack = new Stack<>();
Stack<Integer> value = new Stack<>();
stack.push(root);
value.push(1);
int max = 0;
while(!stack.isEmpty()) {
TreeNode node = stack.pop();
int temp = value.pop();
max = Math.max(temp, max);
if(node.left != null) {
stack.push(node.left);
value.push(temp+1);
}
if(node.right != null) {
stack.push(node.right);
value.push(temp+1);
}
}
return max;
}