-
Notifications
You must be signed in to change notification settings - Fork 396
/
Copy pathmaxProductSubArray.java
44 lines (36 loc) · 1.34 KB
/
maxProductSubArray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
SIMILAR TO KADENEs algorithm!!
Keep track of maxSeenSoFar
In this case, will need to keep track of minProduct to account for negative sums
//TC:O(n)
//SC: O(1)
class Solution {
public static int maxProduct(int[] nums) {
if (nums.length == 0) return 0;
int maxEndHere = nums[0];
int minEndHere = nums[0];
int maxSoFar = nums[0];
for (int i = 1; i < nums.length; i++) {
int num = nums[i];
if (num >= 0) {
maxEndHere = Math.max(maxEndHere * num, num);
minEndHere = Math.min(minEndHere * num, num);
} else { // we have negative!! , so our max endinghere will depend on previous min
int temp = maxEndHere;
maxEndHere = Math.max(minEndHere * num, num);
minEndHere = Math.min(temp * num, num); //we want minEndHere to be as negative as possible so multiply
//by the previous maxEndHere, since we are at negative number
}
maxSoFar = Math.max(maxEndHere, maxSoFar);
}
return maxSoFar;
}
}