-
Notifications
You must be signed in to change notification settings - Fork 396
/
Copy pathmaximumSubArray.java
63 lines (50 loc) · 1.47 KB
/
maximumSubArray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the
largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
//O(N)
//O(1)
class Solution {
public int maxSubArray(int[] nums) {
int n = nums.length;
int currSum = nums[0], maxSum = nums[0];
for(int i = 1; i < n; ++i) {
currSum = Math.max(nums[i], currSum + nums[i]);
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
}
//USING DYNAMIC PROGRAMMING
//EXPLICITY USES DP ARRAY
//O(n)
//O(n)
public int maxSubArray(int[] A) {
int n = A.length;
int[] dp = new int[n];//dp[i] means the maximum subarray ending with A[i];
dp[0] = A[0];
int max = dp[0];
for(int i = 1; i < n; i++){
dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
max = Math.max(max, dp[i]);
}
return max;
}
Brute Force - go through every possible subarray and calculate sum
TC: O(N^2)
SC: O(1)
class Solution {
public int maxSubArray(int[] nums) {
int maxSubarray = Integer.MIN_VALUE;
for (int i = 0; i < nums.length; i++) {
int currentSubarray = 0;
for (int j = i; j < nums.length; j++) {
currentSubarray += nums[j];
maxSubarray = Math.max(maxSubarray, currentSubarray);
}
}
return maxSubarray;
}
}