-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathtopKElements.js
88 lines (81 loc) · 2.71 KB
/
topKElements.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
class TopKElements {
// K Largest Elements using Sorting
kLargestElementsSortingApproach(nums, k) {
nums.sort((a, b) => b - a);
return nums.slice(0, k);
}
// K Largest Elements using Max Heap
kLargestElementsMaxHeapApproach(nums, k) {
const maxHeap = new MaxPriorityQueue({ priority: x => x });
for (const num of nums) {
maxHeap.enqueue(num);
}
const result = [];
for (let i = 0; i < k; i++) {
result.push(maxHeap.dequeue().element);
}
return result;
}
// K Largest Elements using Min Heap
kLargestElementsMinHeapApproach(nums, k) {
const minHeap = new MinPriorityQueue({ priority: x => x });
for (let i = 0; i < k; i++) {
minHeap.enqueue(nums[i]);
}
for (let i = k; i < nums.length; i++) {
minHeap.enqueue(nums[i]);
if (minHeap.size() > k) {
minHeap.dequeue();
}
}
const result = [];
for (let i = 0; i < k; i++) {
result.push(minHeap.dequeue().element);
}
return result;
}
// Top K Frequent Elements using Sorting
topKFrequentElementsSortingApproach(nums, k) {
const frequencyMap = new Map();
nums.forEach(num => frequencyMap.set(num, (frequencyMap.get(num) || 0) + 1));
return Array.from(frequencyMap)
.sort((a, b) => b[1] - a[1])
.slice(0, k)
.map(entry => entry[0]);
}
// Top K Frequent Elements using Min Heap
topKFrequentElementsMinHeapApproach(nums, k) {
const frequencyMap = new Map();
nums.forEach(num => frequencyMap.set(num, (frequencyMap.get(num) || 0) + 1));
const minHeap = new MinPriorityQueue({ priority: x => x[1] });
frequencyMap.forEach((value, key) => {
minHeap.enqueue([key, value]);
if (minHeap.size() > k) {
minHeap.dequeue();
}
});
const result = [];
for (let i = 0; i < k; i++) {
result.push(minHeap.dequeue().element[0]);
}
return result;
}
// K Closest Points to Origin using Max Heap
getDistance(point) {
return point[0] ** 2 + point[1] ** 2;
}
kClosestPointsToOriginMaxHeapApproach(points, k) {
const maxHeap = new MaxPriorityQueue({ priority: point => -this.getDistance(point) });
points.forEach(point => {
maxHeap.enqueue(point);
if (maxHeap.size() > k) {
maxHeap.dequeue();
}
});
const result = [];
for (let i = 0; i < k; i++) {
result.push(maxHeap.dequeue().element);
}
return result;
}
}