forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_721.java
128 lines (118 loc) · 4.69 KB
/
_721.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;
public class _721 {
public static class Solution1 {
/**
* credit: https://leetcode.com/articles/accounts-merge/#approach-1-depth-first-search-accepted
* <p>
* Time Complexity: O(∑ai*logai) where ai is the length of accounts[i].
* Without the log factor, this is the complexity to build the graph and search for each component. The log factor is for sorting each component at the end.
* Space Complexity: O(∑ai) the space used by the graph and search.
* .
*/
public List<List<String>> accountsMerge(List<List<String>> accounts) {
Map<String, String> emailToName = new HashMap();
Map<String, ArrayList<String>> graph = new HashMap();
for (List<String> account : accounts) {
String name = "";
for (String email : account) {
if (name == "") {
name = email;
continue;
}
graph.computeIfAbsent(email, x -> new ArrayList<>()).add(account.get(1));
graph.computeIfAbsent(account.get(1), x -> new ArrayList<>()).add(email);
emailToName.put(email, name);
}
}
Set<String> seen = new HashSet();
List<List<String>> ans = new ArrayList();
for (String email : graph.keySet()) {
if (!seen.contains(email)) {
seen.add(email);
Stack<String> stack = new Stack();
stack.push(email);
List<String> component = new ArrayList();
while (!stack.empty()) {
String node = stack.pop();
component.add(node);
for (String nei : graph.get(node)) {
if (!seen.contains(nei)) {
seen.add(nei);
stack.push(nei);
}
}
}
Collections.sort(component);
component.add(0, emailToName.get(email));
ans.add(component);
}
}
return ans;
}
}
public static class Solution2 {
/**
* credit: https://leetcode.com/articles/accounts-merge/#approach-2-union-find-accepted
* DSU stands for Disjoint Set Union: https://en.wikipedia.org/wiki/Disjoint-set_data_structure
* <p>
* Time complexity: O(AlogA)
* Space complexity: O(A)
*/
public List<List<String>> accountsMerge(List<List<String>> accounts) {
DSU dsu = new DSU();
Map<String, String> emailToName = new HashMap<>();
Map<String, Integer> emailToId = new HashMap<>();
int id = 0;
for (List<String> account : accounts) {
String name = "";
for (String email : account) {
if (name.equals("")) {
name = email;
continue;
}
emailToName.put(email, name);
if (!emailToId.containsKey(email)) {
emailToId.put(email, id++);
}
dsu.union(emailToId.get(account.get(1)), emailToId.get(email));
}
}
Map<Integer, List<String>> ans = new HashMap<>();
for (String email : emailToName.keySet()) {
int index = dsu.find(emailToId.get(email));
ans.computeIfAbsent(index, x -> new ArrayList()).add(email);
}
for (List<String> component : ans.values()) {
Collections.sort(component);
component.add(0, emailToName.get(component.get(0)));
}
return new ArrayList<>(ans.values());
}
class DSU {
int[] parent;
public DSU() {
parent = new int[10001];
for (int i = 0; i <= 10000; i++) {
parent[i] = i;
}
}
public int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
public void union(int x, int y) {
parent[find(x)] = find(y);
}
}
}
}