Skip to content

Files

Latest commit

author
Shuo
Feb 16, 2022
ce6b544 · Feb 16, 2022

History

History

recover-the-original-array

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Feb 16, 2022

< Previous                  Next >

Alice had a 0-indexed array arr consisting of n positive integers. She chose an arbitrary positive integer k and created two new 0-indexed integer arrays lower and higher in the following manner:

  1. lower[i] = arr[i] - k, for every index i where 0 <= i < n
  2. higher[i] = arr[i] + k, for every index i where 0 <= i < n

Unfortunately, Alice lost all three arrays. However, she remembers the integers that were present in the arrays lower and higher, but not the array each integer belonged to. Help Alice and recover the original array.

Given an array nums consisting of 2n integers, where exactly n of the integers were present in lower and the remaining in higher, return the original array arr. In case the answer is not unique, return any valid array.

Note: The test cases are generated such that there exists at least one valid array arr.

 

Example 1:

Input: nums = [2,10,6,4,8,12]
Output: [3,7,11]
Explanation:
If arr = [3,7,11] and k = 1, we get lower = [2,6,10] and higher = [4,8,12].
Combining lower and higher gives us [2,6,10,4,8,12], which is a permutation of nums.
Another valid possibility is that arr = [5,7,9] and k = 3. In that case, lower = [2,4,6] and higher = [8,10,12]. 

Example 2:

Input: nums = [1,1,3,3]
Output: [2,2]
Explanation:
If arr = [2,2] and k = 1, we get lower = [1,1] and higher = [3,3].
Combining lower and higher gives us [1,1,3,3], which is equal to nums.
Note that arr cannot be [1,3] because in that case, the only possible way to obtain [1,1,3,3] is with k = 0.
This is invalid since k must be positive.

Example 3:

Input: nums = [5,435]
Output: [220]
Explanation:
The only possible combination is arr = [220] and k = 215. Using them, we get lower = [5] and higher = [435].

 

Constraints:

  • 2 * n == nums.length
  • 1 <= n <= 1000
  • 1 <= nums[i] <= 109
  • The test cases are generated such that there exists at least one valid array arr.

Related Topics

[Array] [Hash Table] [Enumeration] [Sorting]

Hints

Hint 1 If we fix the value of k, how can we check if an original array exists for the fixed k?
Hint 2 The smallest value of nums is obtained by subtracting k from the smallest value of the original array. How can we use this to reduce the search space for finding a valid k?
Hint 3 You can compute every possible k by using the smallest value of nums (as lower[i]) against every other value in nums (as the corresponding higher[i]).
Hint 4 For every computed k, greedily pair up the values in nums. This can be done sorting nums, then using a map to store previous values and searching that map for a corresponding lower[i] for the current nums[j] (as higher[i]).