-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArrays_median-of-two-sorted-arrays
73 lines (60 loc) · 1.84 KB
/
Arrays_median-of-two-sorted-arrays
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
https://leetcode.com/problems/median-of-two-sorted-arrays/
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n)).
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
class Solution {
public:
double findMedianSortedArrays(vector<int>& A, vector<int>& B)
{
int n = A.size();
int m = B.size();
if (n > m)
return findMedianSortedArrays(B, A); // Swapping to make A smaller
int start = 0;
int end = n;
int realmidinmergedarray = (n + m + 1) / 2;
while (start <= end) {
int mid = (start + end) / 2;
int leftAsize = mid;
int leftBsize = realmidinmergedarray - mid;
int leftA
= (leftAsize > 0)
? A[leftAsize - 1]
: INT_MIN; // checking overflow of indices
int leftB
= (leftBsize > 0) ? B[leftBsize - 1] : INT_MIN;
int rightA
= (leftAsize < n) ? A[leftAsize] : INT_MAX;
int rightB
= (leftBsize < m) ? B[leftBsize] : INT_MAX;
// if correct partition is done
if (leftA <= rightB and leftB <= rightA) {
if ((m + n) % 2 == 0)
return (max(leftA, leftB)
+ min(rightA, rightB))
/ 2.0;
return max(leftA, leftB);
}
else if (leftA > rightB) {
end = mid - 1;
}
else
start = mid + 1;
}
return 0.0;
}
};