-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathbipartiteGraphTest.cpp
141 lines (133 loc) · 3.28 KB
/
bipartiteGraphTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ld long double
#define rep(i,a,b) for(ll i=a;i<b;i++)
#define repp(i,a,b) for(ll i=a;i<=b;i++)
#define rrep(i,a,b) for(ll i=a;i>=b;i--)
#define endl "\n"
#define deb(x) cerr << #x << "=" << x << endl
#define debb(x, y) cerr << #x << "=" << x << "," << #y << "=" << y << endl
#define mod ((ll)1e18)
#define N ((ll)2e6)
#define pb push_back
#define in insert
#define F first
#define S second
#define mp make_pair
#define lb lower_bound
#define ub upper_bound
#define PI 3.1415926535897932384626
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define speed ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define test ll t; cin>>t; while(t--)
typedef pair<ll, ll> pll;
typedef vector<pll> vpll;
ll dr[] = { -1, 1, 0, 0};
ll dc[] = {0, 0, 1, -1};
/*Functions*/
ll gcd(ll a, ll b);
ll exp(ll x, ll y, ll p);
ll exp(ll x, ll y);
void InverseofNumber();
void InverseofFactorial();
void factorial();
ll Binomial(ll n, ll R);
ll factorialNumInverse[N + 1];
ll naturalNumInverse[N + 1];
ll fact[N + 1];
void fileIO() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
ll n, m; //no of vertices and number of edges
vector<ll> v[N]; //the graph representation
ll vis[N]; //visited array
ll color[N]; //color array
bool dfs(ll x, ll c) {
vis[x] = 1;
color[x] = c;
for (auto i : v[x]) {
if (vis[i] == 0) {
if (dfs(i, c ^ 1) == false) //invert color
return false;
}
else {
if (color[x] == color[i])
return false;
}
}
return true;
}
int main() {
speed
// InverseofNumber(),InverseofFactorial(),factorial();
fileIO();
cin >> n >> m;
while (m--) {
ll xx, yy; cin >> xx >> yy;
v[xx].pb(yy);
v[yy].pb(xx);
}
ll ans = 0;
bool answer;
for (ll i = 1; i <= n; i++) {
if (!vis[i]) {
answer = dfs(i, 0); //dfs calls for unvisited nodes
if (!answer) {
cout << "NOT BIPARTITE" << endl;
exit(0);
}
}
}
cout << "BIPARTITE" << endl;
return 0;
}
/*All Functions*/
ll gcd(ll a, ll b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
ll exp(ll x, ll y, ll p) {
ll res = 1;
while (y) {
if (y % 2)
res = (res * x % p) % p;
x = (x * x) % p;
y /= 2;
}
return res;
}
ll exp(ll x, ll y) {
ll res = 1;
while (y) {
if (y % 2)
res = (res * x ) ;
x = (x * x) ;
y /= 2;
}
return res;
}
void InverseofNumber() {
naturalNumInverse[0] = naturalNumInverse[1] = 1;
for (ll i = 2; i <= N; i++)
naturalNumInverse[i] = naturalNumInverse[mod % i] * (mod - mod / i) % mod;
}
void InverseofFactorial() {
factorialNumInverse[0] = factorialNumInverse[1] = 1;
for (ll i = 2; i <= N; i++)
factorialNumInverse[i] = (naturalNumInverse[i] * factorialNumInverse[i - 1]) % mod;
}
void factorial() {
fact[0] = 1;
for (ll i = 1; i <= N; i++)
fact[i] = (fact[i - 1] * i) % mod;
}
ll Binomial(ll n, ll R) {
ll ans = ((fact[n] * factorialNumInverse[R]) % mod * (factorialNumInverse[n - R]) % mod) % mod;
return ans;
}