-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkmeans_tf.py
47 lines (30 loc) · 1.48 KB
/
kmeans_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import tensorflow as tf
from .kmeans_base import KMeansBase
class KMeansTensorflow(KMeansBase):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def prepare(self, X):
centers = self.init_clusters(X, self.n_clusters)
centers = tf.Variable(centers) # K x C
X = tf.convert_to_tensor(X) # B x C
return X, centers
def _main_loop(self, X, centers):
tf.function
def step(iteration, centers, assignments, diff):
distance = tf.reduce_sum(tf.square((tf.expand_dims(X, axis=2) - tf.expand_dims(tf.transpose(centers, perm=(1, 0)), axis=0))), axis=1)
assignments = tf.math.argmin(distance, axis=1)
new_centers = []
for i in range(self.n_clusters):
new_centers.append(tf.reduce_mean(X[assignments == i], axis=0))
new_centers = tf.stack(new_centers, axis=0)
diff = tf.reduce_sum(tf.square((new_centers - centers)))
return iteration + 1, new_centers, assignments, diff
c = tf.constant(self.early_stop_threshold, dtype=X.dtype)
tf.function
def cond(iteration, centers, assignments, diff):
return iteration < self.max_iter and tf.math.greater(diff, c)
iteration, centers, assignments, diff = tf.while_loop(cond, step, [0, centers, None, 100])
return centers, assignments
def tensor_to_numpy(self, t):
return np.array(t)