-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpascal_triangle.py
58 lines (43 loc) · 1.39 KB
/
pascal_triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
'''
Given an integer n, return the nth (0-indexed) row of Pascal's triangle.
Pascal's triangle can be created as follows: In the top row, there
is an array of 1. Each subsequent row is created by adding the number above
and to the left with the number above and to the right, treating empty elements as 0.
'''
class Solution:
def solve(self, n):
def helper(self,d):
res = []
for i in range(len(d)-1):
temp = d[i] + d[i+1]
res.append(temp)
res.insert(0,1)
res.insert( len(res),1)
return res
numRows = n
res = []
res.append([1])
if numRows == 0:
return [1]
for i in range(1,numRows+1):
prev = res[i-1]
temp = helper(self,prev)
res.append(temp)
print(res)
res = res[n]
return res
#another solution
class Solution:
def solve(self, n):
res = [1]
for k in range(1, n + 1):
res.append(res[-1] * (n + 1 - k) / k)
return res
#another
from math import comb # import choose notation function
class Solution:
def solve(self, n):
row = []
for i in range(0, n + 1): # loop through all values in row
row.append(comb(n, i)) # calculate row column value
return row