-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_binary_expression_tree_from_infix_expression.py
255 lines (201 loc) · 8.55 KB
/
build_binary_expression_tree_from_infix_expression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
'''
A binary expression tree is a kind of binary tree used to represent arithmetic expressions. Each node of a binary expression tree has either zero or two children. Leaf nodes (nodes with 0 children) correspond to operands (numbers), and internal nodes (nodes with 2 children) correspond to the operators '+' (addition), '-' (subtraction), '*' (multiplication), and '/' (division).
For each internal node with operator o, the infix expression that it represents is (A o B), where A is the expression the left subtree represents and B is the expression the right subtree represents.
You are given a string s, an infix expression containing operands, the operators described above, and parentheses '(' and ')'.
Return any valid binary expression tree, which its in-order traversal reproduces s after omitting the parenthesis from it (see examples below).
Please note that order of operations applies in s. That is, expressions in parentheses are evaluated first, and multiplication and division happen before addition and subtraction.
Operands must also appear in the same order in both s and the in-order traversal of the tree.
'''
Base case:
If it is just a number: return a node
If it is nothing, return None(might be optional?)
Loop through the expression once to find all the + and -(ignore anything between parentheses)
Loop through the expression once to find all the * and /(ignore anything between parentheses)
If we find nothing, everything is in parenthesis, so reduce a layer and continue.
Comment on any questions
# Definition for a binary tree node.
# class Node(object):
# def __init__(self, val=" ", left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def expTree(self, s: str) -> 'Node':
if s.isnumeric():
return Node(s)
if len(s) == 0:
return None
plus = s.find('+')
paren = 0
for i in range(len(s)-1, -1, -1):
if s[i] == ')':
paren +=1
elif s[i] == '(':
paren -=1
if paren > 0:
continue
if s[i] == '+':
return Node('+', self.expTree(s[:i]), self.expTree(s[i+1:]))
if s[i] == '-':
return Node('-', self.expTree(s[:i]), self.expTree(s[i+1:]))
paren = 0
for i in range(len(s)-1, -1, -1):
if s[i] == ')':
paren +=1
elif s[i] == '(':
paren -=1
if paren > 0:
continue
if s[i] == '*':
return Node('*', self.expTree(s[:i]), self.expTree(s[i+1:]))
if s[i] == '/':
return Node('/', self.expTree(s[:i]), self.expTree(s[i+1:]))
if s[0] == '(' and s[-1] == ')':
return self.expTree(s[1:-1])
--------------------------------------------------------------------------------------------
class Solution:
def expTree(self, s: str) -> 'Node':
operandStack = []
operatorStack = []
# CONSIDERATION: HIGHER THE OPERATION HIGHER IS THE PRECEDENCE
precedence = {'+': 1, '-': 1, '*': 2, '/': 2, '(': 3}
prevScore = 0
def buildSubTree():
right = operandStack.pop()
left = operandStack.pop()
operandStack.append(Node(operatorStack.pop(), left, right))
for ch in s:
if ch == ')':
while operatorStack[-1] != '(':
buildSubTree()
# POP OUT '('
operatorStack.pop()
prevScore = precedence[operatorStack[-1]] if operatorStack else 0
elif ch in precedence:
if ch == '(':
prevScore = 0
elif prevScore < precedence[ch]:
prevScore = precedence[ch]
else:
while operatorStack and operatorStack[-1] != '(' and prevScore >= precedence[ch]:
buildSubTree()
if operatorStack:
prevScore = precedence[operatorStack[-1]]
prevScore = precedence[ch]
operatorStack.append(ch)
else:
operandStack.append(Node(ch))
while operatorStack and operatorStack[-1] != '(':
buildSubTree()
return operandStack[0]
--------------------------------------------------------------------------
class Solution:
def expTree(self, s: str) -> 'Node':
if len(s) <= 1:
return None if not s else Node(s[0])
n = len(s)
# find the last '-' or '+' sign, which has the lowest priority
sign = None
i = n - 1
sign_pos = n
while i > 0:
if not s[i].isdigit():
if s[i] == ')':
# traverse to the matching '('
j = i-1
nbracket = 1
while j >= 0:
if s[j] == ')':
nbracket += 1
elif s[j] == '(':
nbracket -= 1
if nbracket == 0:
break
j -= 1
i = j - 1
continue
elif not sign:
sign = s[i]
sign_pos = i
# the right-most + or - (if any) will be the condition to stop and do a recursive call
elif s[i] in ('+' ,'-') and sign in ('*', '/'):
sign = s[i]
sign_pos = i
break
i -= 1
# bracket case
if not sign:
return self.expTree(s[1:-1])
node = Node(sign)
node.left = self.expTree(s[:sign_pos])
node.right = self.expTree(s[sign_pos+1:])
return node
---------------------------------------------------------------------
Convert infix to postfix.
Build expression tree from postfix.
I think there are tons of references of both 1 and 2 steps on the web, but I found the following articles.
Convert infix to postfix first
https://www.includehelp.com/c/infix-to-postfix-conversion-using-stack-with-c-program.aspx
Build expression tree from postfix.
https://www.techiedelight.com/expression-tree/
The following problem is similar to this but little harder for me because the length of the digit can be more than 1.
https://leetcode.com/problems/basic-calculator/
# Definition for a binary tree node.
# class Node(object):
# def __init__(self, val=" ", left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
operators_level = {
"(": 0,
")": 0,
"+": 1,
"-": 1,
"*": 2,
"/": 2
}
operators = {
"+", "-", "*", "/"
}
class Solution:
def expTree(self, s: str) -> 'Node':
postfix = self.buildPostFix(s)
tree = self.buildTreeFromPostFix(postfix)
return tree
def buildTreeFromPostFix(self, postfix: List[str]) -> 'Node':
stack = deque()
for c in postfix:
if c in operators:
right = stack.pop()
left = stack.pop()
currNode = Node(c, left, right)
stack.append(currNode)
else:
stack.append(Node(c))
return stack[-1]
def buildPostFix(self, s: str) -> List[str]:
stack = deque()
postfix = []
for i in range(len(s)):
c = s[i]
if c in operators_level.keys():
if c == "(":
stack.append(c)
elif c == ")":
while stack and stack[-1] != "(":
postfix.append(stack.pop())
stack.pop()
elif stack and operators_level[c] > operators_level[stack[-1]]:
stack.append(c)
else:
while stack:
if stack[-1] == "(":
break
postfix.append(stack.pop())
stack.append(c)
else:
postfix.append(c)
while stack:
postfix.append(stack.pop())
return postfix