-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcloses_binary_search_tree_value_ii.py
294 lines (249 loc) · 9.62 KB
/
closes_binary_search_tree_value_ii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
'''
Given the root of a binary search tree, a target value, and an integer k, return the
k values in the BST that are closest to the target. You may return the answer in any order.
You are guaranteed to have only one unique set of k values in the BST that are closest to the target
'''
class Solution(object):
def closestKValues(self, root, target, k):
"""
:type root: TreeNode
:type target: float
:type k: int
:rtype: List[int]
"""
def dfs(root, target, heap):
if root is None:
return
dfs(root.left, target, heap)
heapq.heappush(heap, (abs(root.val - target), root.val))
dfs(root.right, target, heap)
heap = []
dfs(root, target, heap)
output = []
for _ in range(k):
output.append(heapq.heappop(heap)[1])
return output
-------------------------------------------------------------------------------------------
I didn't get a O(klogn) solution until I drew a figure today. If you didn't get a O(klogn) solution yet, try drawing a bst on paper and track the change of the two stacks manually. You will find it. (I drew a bst with 15 nodes, 1 to 15, and target = 6.5, search for nearest 8 nodes)
def closestKValues(self, root, target, k):
"""
:type root: TreeNode
:type target: float
:type k: int
:rtype: List[int]
"""
res = []
smallers, largers = [], [] # two stacks tracking smaller and larger nodes
while root:
if root.val > target:
largers.append(root)
root = root.left
else:
smallers.append(root)
root = root.right
for _ in range(k):
if smallers and (not largers or largers and target - smallers[-1].val <= largers[-1].val - target):
res.append(self._predecessor(smallers))
else:
res.append(self._successor(largers))
return res
def _predecessor(self, smallers):
curr = smallers.pop()
node = curr.left
while node:
smallers.append(node)
node = node.right
return curr.val
def _successor(self, largers):
curr = largers.pop()
node = curr.right
while node:
largers.append(node)
node = node.left
return curr.val
------------------------------------------------------------------------
Do an inorder traversing to a BST, we will encounter values from small to large, like SSSSSSSTLLLLLLL, where T is the closest num to the target, and S is smaller than T, and the L is larger than T.
We know the result should be some ...SSSTLLL... with the length of k. If we move a queue with a max length of k and slide it from left to right, the sliding can be stopped and the answer was found when it meets an L and (L - target) > (target - S), where S is the smallest number on the top of the queue. Here is my code:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def closestKValues(self, root: Optional[TreeNode], target: float, k: int) -> List[int]:
queue = collections.deque()
def dfs(node):
if node:
dfs(node.left)
if len(queue) == k:
if node.val - target > target - queue[0]:
return
queue.popleft()
queue.append(node.val)
dfs(node.right)
dfs(root)
return list(queue)
-----------------------------------------------------------------------------------------------
Use helper function to find predecessor and successor. Find the closest value and expand to the two sides.
from collections import deque
class Solution(object):
def closestKValues(self, root, target, k):
"""
:type root: TreeNode
:type target: float
:type k: int
:rtype: List[int]
"""
def get_successor(cur_val):
suc = None
node = root
while node:
if cur_val < node.val:
suc = node
node = node.left
else:
node = node.right
return suc
def get_predecessor(cur_val):
pre = None
stack = []
node = root
while node and node.val != cur_val:
stack.append(node)
if node.val > cur_val:
node = node.left
else:
node = node.right
if node.left: # if node has left child, find the rightmost in left subtree
tmp = node.left
while tmp.right:
tmp = tmp.right
pre = tmp
elif stack and node == stack[-1].right: # if node is the right child
pre = stack[-1]
else:
while stack and node == stack[-1].left: # if node is left child, retrieve up
node = stack.pop()
if stack:
pre = stack[-1]
return pre
if k == 0:
return []
node = root
min_diff = float("inf")
minimum = None
while node:
if abs(node.val - target) < min_diff:
min_diff = abs(node.val - target)
minimum = node.val
if node.val > target:
node = node.left
elif node.val < target:
node = node.right
else:
break
k -= 1
ans = deque([minimum])
while k > 0:
left = get_predecessor(ans[0])
right = get_successor(ans[-1])
if not left:
ans.append(right.val)
elif not right:
ans.appendleft(left.val)
else:
if abs(left.val - target) < abs(right.val - target):
ans.appendleft(left.val)
else:
ans.append(right.val)
k -= 1
return list(ans)
-------------------------------------------------------------------------------------------
Time Complexity - O(N)
Breakdown - O(N) for Inorder traversal, O(logN) for finding closest index (binary search), O(N) worst case for 2-Pointers
Space Complexity - O(N)
Breakdown - O(N) for inorder list + O(H) (height of tree) for recursive stack, In the worst case our result list has N items O(N)
Don't forget to upvote, if you find it useful!! :)
Happy Coding!!
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def closestKValues(self, root: TreeNode, target: float, k: int) -> List[int]:
inorder = []
def traverse(node):
nonlocal inorder
if not node:
return None
traverse(node.left)
inorder.append(node.val)
traverse(node.right)
traverse(root)
s, e = 0, len(inorder) - 1
while s <= e: # search for target and get closest points to the target
m = s+(e-s)//2
if inorder[m] > target:
e = m-1
elif inorder[m] < target:
s = m+1
else:
s = m
break
res = []
# initialize two pointers, from the start and start - 1 and append values in res which is closer to target
e = s
s = s-1
while (s >= 0 or e < len(inorder)) and len(res) < k:
if s >= 0 and e < len(inorder):
if abs(target - inorder[s]) < abs(target - inorder[e]):
res.append(inorder[s])
s -= 1
else:
res.append(inorder[e])
e += 1
elif s >= 0:
res.append(inorder[s])
s -= 1
else:
res.append(inorder[e])
e += 1
return res
-----------------------------------------------------------------------------------------------
use a min heap with the index being the distance: abs(nums[a] - target)
do an inorder traversal, add tuples to the result with (distance, number)
heapify the result and pop k elements off
overall runtime 2*o(n) + o(k)
import heapq
class Solution:
def closestKValues(self, root: Optional[TreeNode], target: float, k: int) -> List[int]:
nums = self.dfs(root, target)
heapq.heapify(nums)
result = []
for _ in range(k):
elem = heapq.heappop(nums)
result.append(elem[1])
return result
def dfs(self, root, target):
if root is None:
return []
return self.dfs(root.left, target) + [(abs(root.val - target), root.val)] + self.dfs(root.right, target)
-----------------------------------------------------------------
def closestKValues(self, root: Optional[TreeNode], target: float, k: int) -> List[int]:
distances = [] # (distance, value)
q = deque()
q.append(root)
while q:
node = q.popleft()
if node:
distances.append((abs(target - node.val), node.val))
q.append(node.left)
q.append(node.right)
distances.sort()
output = []
for distance, value in distances[:k]:
output.append(value)
return output