-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount_complete_tree_nodes.py
116 lines (91 loc) · 3.8 KB
/
count_complete_tree_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
'''
Given the root of a complete binary tree, return the number of the nodes in the tree.
According to Wikipedia, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
Design an algorithm that runs in less than O(n) time complexity.
'''
compare the depth between left sub tree and right sub tree.
A, If it is equal, it means the left sub tree is a full binary tree
B, It it is not , it means the right sub tree is a full binary tree
'''
Only traversing along the left and right boundary.
If both left and right height are equal then
the bottom level would be full from left to right and total no. of nodes in that subtree
is 2^h - 1.
If left and right height are not equal then add +1 for current root and go to left child
and right child.
'''
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
if not root: return 0
leftHeight = self.getLeftHeight(root)
rightHeight = self.getRightHeight(root)
if leftHeight == rightHeight:
return 2 ** leftHeight - 1
else:
return 1 + self.countNodes(root.left) + self.countNodes(root.right)
def getLeftHeight(self, node):
height = 0
while node:
height += 1
node = node.left
return height
def getRightHeight(self, node):
height = 0
while node:
height += 1
node = node.right
return height
# Height = H = log(n) where n = total number of nodes
# Time: O(H * H) = O(log(n)^2) = O(Log^2 n)
# Auxiliary Space: O(H) = O(log(n))
--------------------------------------------------------------------------------------------------------------------
class Solution:
# @param {TreeNode} root
# @return {integer}
def countNodes(self, root):
if not root:
return 0
leftDepth = self.getDepth(root.left)
rightDepth = self.getDepth(root.right)
if leftDepth == rightDepth:
return pow(2, leftDepth) + self.countNodes(root.right)
else:
return pow(2, rightDepth) + self.countNodes(root.left)
def getDepth(self, root):
if not root:
return 0
return 1 + self.getDepth(root.left)
---------------------------------------------------------------------------------------
class Solution:
def countNodes(self, root: TreeNode) -> int:
## RC ##
## APPROACH : RECURSION ##
## TIME COMPLEXICITY : LOG N * LOG N ##
## LOGIC ##
# If left sub tree height equals right sub tree height then,
# a. left sub tree is perfect binary tree
# b. right sub tree is complete binary tree
# If left sub tree height greater than right sub tree height then,
# a. left sub tree is complete binary tree
# b. right sub tree is perfect binary tree
if not root:
return 0
def depthLeft(node):
d = 0
while node:
d += 1
node = node.left
return d
def depthRight(node):
d = 0
while node:
d += 1
node = node.right
return d
ld = depthLeft(root.left)
rd = depthRight(root.right)
if ld == rd:
return 2**(ld + 1) - 1
else:
return 1 + self.countNodes(root.left) + self.countNodes(root.right)
--------------------------------------------------------------------------------------------------------------