-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinding_mk_average.py
199 lines (160 loc) · 6.6 KB
/
finding_mk_average.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
'''
You are given two integers, m and k, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.
The MKAverage can be calculated using these steps:
If the number of the elements in the stream is less than m you should consider the MKAverage to be -1. Otherwise, copy the last m elements of the stream to a separate container.
Remove the smallest k elements and the largest k elements from the container.
Calculate the average value for the rest of the elements rounded down to the nearest integer.
Implement the MKAverage class:
MKAverage(int m, int k) Initializes the MKAverage object with an empty stream and the two integers m and k.
void addElement(int num) Inserts a new element num into the stream.
int calculateMKAverage() Calculates and returns the MKAverage for the current stream rounded down to the nearest integer.
'''
class SegmentTree:
def __init__(self, max_value: int):
self.max_value = 1
while max_value > 0:
max_value //= 2
self.max_value *= 2
self.count = [0] * (2*self.max_value)
self.sum = [0] * (2*self.max_value)
def _update(self, left: int, right: int, node: int, num: int, cnt: int) -> None:
if left == right:
self.count[node] += cnt
self.sum[node] += cnt * num
return
middle = (left + right) // 2
if num <= middle:
self._update(left, middle, node*2, num, cnt)
else:
self._update(middle+1, right, node*2+1, num, cnt)
self.count[node] = self.count[node*2] + self.count[node*2+1]
self.sum[node] = self.sum[node*2] + self.sum[node*2+1]
def add(self, num: int) -> None:
self._update(left=1, right=self.max_value, node=1, num=num, cnt=1)
def remove(self, num: int) -> None:
self._update(left=1, right=self.max_value, node=1, num=num, cnt=-1)
def _query(self, left: int, right: int, node: int, target: int) -> int:
if left == right:
return self.sum[node] // self.count[node] * target
middle = (left + right) // 2
if target <= self.count[node*2]:
return self._query(left, middle, node*2, target)
else:
return self.sum[node*2] + self._query(middle+1, right, node*2+1, target-self.count[node*2])
def query(self, target: int) -> int:
if target == 0:
return 0
return self._query(left=1, right=self.max_value, node=1, target=target)
class MKAverage:
def __init__(self, m: int, k: int):
self.buffer_size = m
self.offset = k
self.buffer = collections.deque()
self.tree = SegmentTree(100_000)
def addElement(self, num: int) -> None:
if len(self.buffer) == self.buffer_size:
value = self.buffer.popleft()
self.tree.remove(value)
self.buffer.append(num)
self.tree.add(num)
def calculateMKAverage(self) -> int:
if len(self.buffer) < self.buffer_size:
return -1
return (self.tree.query(self.buffer_size - self.offset) - self.tree.query(self.offset)) // (self.buffer_size - 2*self.offset)
----------------------------------------------------------------------------------------------------------------------------------------------
from sortedcontainers import SortedList
class MKAverage:
MAX_NUM = 10 ** 5
def __init__(self, m: int, k: int):
self.m = m
self.k = k
# sorted list
self.sl = SortedList([0] * m)
# sum of k smallest elements
self.sum_k = 0
# sum of m - k smallest elements
self.sum_m_k = 0
# queue for the last M elements if the stream
self.q = deque([0] * m)
def addElement(self, num: int) -> None:
# Time: O(logm)
m, k, q, sl = self.m, self.k, self.q, self.sl
# update q
q.append(num)
old = q.popleft()
# remove the old num
r = sl.bisect_right(old)
# maintain sum_k
if r <= k:
self.sum_k -= old
self.sum_k += sl[k]
# maintain sum_m_k
if r <= m - k:
self.sum_m_k -= old
self.sum_m_k += sl[m-k]
# remove the old num
sl.remove(old)
# add the new num
r = sl.bisect_right(num)
if r < k:
self.sum_k -= sl[k-1]
self.sum_k += num
if r < m - k:
self.sum_m_k -= sl[m - k - 1]
self.sum_m_k += num
sl.add(num)
return
def calculateMKAverage(self) -> int:
# Time: O(1)
if self.sl[0] == 0:
return -1
return (self.sum_m_k - self.sum_k) // (self.m - self.k * 2)
--------------------------------------------------------------------------------------
from sortedcontainers import SortedList
from collections import deque
class MKAverage:
def __init__(self, m: int, k: int):
self.m = m
self.k = k
self.sl = SortedList()
self.window = deque()
self.sum = 0
def addElement(self, num: int) -> None:
if len(self.sl) < self.m:
self.window.append(num)
self.sl.add(num)
if len(self.sl) == self.m:
self.sum = sum(self.sl[self.k:-self.k])
else:
v = self.window.popleft()
self.window.append(num)
i = self.sl.bisect_left(v)
j = self.sl.bisect_left(num)
if 0<=i<self.k:
if self.k < j:
self.sum -= self.sl[self.k]
if j <= self.m - self.k:
self.sum += num
else:
self.sum += self.sl[self.m-self.k]
elif self.k <= i < self.m - self.k:
self.sum -= v
if 0<= j < self.k:
self.sum += self.sl[self.k-1]
elif self.k <= j <= self.m-self.k:
self.sum += num
else:
self.sum += self.sl[self.m-self.k]
else:
if j < self.m - self.k:
self.sum -= self.sl[self.m-self.k-1]
if self.k <= j:
self.sum += num
else:
self.sum += self.sl[self.k-1]
self.sl.remove(v)
self.sl.add(num)
def calculateMKAverage(self) -> int:
if len(self.sl) < self.m:
return -1
return self.sum//(self.m-2*self.k)