-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmaximum-performance-of-a-team.py
74 lines (57 loc) · 2.52 KB
/
maximum-performance-of-a-team.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import heapq
from typing import List, Tuple, Union
from functools import lru_cache
class Solution:
def maxPerformance(
self, n: int, speed: List[int], efficiency: List[int], k: int
) -> int:
MAX_EFFICIENCY = max(efficiency) + 1
MOD = 10 ** 9 + 7
heap_speed: List[Tuple[int, int]] = []
total = 0
min_efficiency = MAX_EFFICIENCY
max_performance = 0
for pos, _ in sorted(enumerate(efficiency), key=lambda x: x[1], reverse=True):
if len(heap_speed) == k:
this_speed, this_pos = heapq.heappop(heap_speed)
total -= this_speed
heapq.heappush(heap_speed, (speed[pos], pos))
min_efficiency = min(min_efficiency, efficiency[pos])
total += speed[pos]
max_performance = max(max_performance, (total * min_efficiency))
return max_performance % MOD
def maxPerformanceDPTopDown(
self, n: int, speed: List[int], efficiency: List[int], k: int
) -> int:
# N ^ 3 -> TLE
MAX_EFFICIENCY = max(efficiency) + 1
MOD = 10 ** 9 + 7
tmp = list(zip(efficiency, speed))
tmp.sort()
efficiency = list(map(lambda x: x[0], tmp))
speed = list(map(lambda x: x[1], tmp))
@lru_cache(None)
def dp(pos: int, left: int) -> Tuple[int, int]:
# return (sum of the path, min efficiency in the path)
if left == 0:
return (0, MAX_EFFICIENCY)
if pos == len(speed):
return (0, MAX_EFFICIENCY)
# pick this and stop
max_performance = speed[pos] * efficiency[pos]
path_sum, min_efficiency = speed[pos], efficiency[pos]
# pick this and continue
for next_pos in range(pos + 1, len(speed)):
path_sum_next, min_efficiency_next = dp(next_pos, left - 1)
path_sum_this = path_sum_next + speed[pos]
min_efficiency_this = min(min_efficiency_next, efficiency[pos])
performance = path_sum_this * min_efficiency_this
if performance > max_performance:
path_sum, min_efficiency = path_sum_this, min_efficiency_this
max_performance = performance
return path_sum, min_efficiency
max_performance = 0
for pos in range(len(speed)):
path_sum, min_efficiency = dp(pos, k)
max_performance = max(max_performance, path_sum * min_efficiency)
return max_performance % MOD