-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmax_flow.py
executable file
·47 lines (41 loc) · 1.62 KB
/
max_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python
from argparse import ArgumentParser
import networkx as nx
import random
def create_graph(nr_nodes_per_layer=3):
alpha = 3
beta = 0.5
G = nx.DiGraph()
source = 0
sink = 2*nr_nodes_per_layer + 1
fmt_str = 'capacity {0} -> {1}: {2:.3f}'
# from source to first layter
for i in range(1, nr_nodes_per_layer + 1):
capacity = random.gammavariate(alpha, beta)
G.add_edge(source, i, capacity=capacity)
print(fmt_str.format(source, i, capacity))
# from layter 1 to layer 2
for i in range(1, nr_nodes_per_layer + 1):
j = i + nr_nodes_per_layer
capacity = random.gammavariate(alpha, beta)
G.add_edge(i, j, capacity=capacity)
print(fmt_str.format(i, j, capacity))
# rom layer 2 to sink
for i in range(nr_nodes_per_layer + 1, 2*nr_nodes_per_layer + 1):
capacity = random.gammavariate(alpha, beta)
G.add_edge(i, sink, capacity=capacity)
print(fmt_str.format(i, sink, capacity))
return G, source, sink
def print_flow_dict(G, flow_dict):
for edge in G.edges_iter():
i, j = edge
print('flow {0} -> {1}: {2:.3f}'.format(i, j, flow_dict[i][j]))
if __name__ == '__main__':
arg_parser = ArgumentParser(description='experiment with maximum flow '
'algorithm')
arg_parser.add_argument('--n', type=int, help='number of nodes/layer')
options = arg_parser.parse_args()
G, source, sink = create_graph(options.n)
flow_value, flow_dict = nx.maximum_flow(G, source, sink)
print('value = {0:.3f}'.format(flow_value))
print_flow_dict(G, flow_dict)