-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcurves.dart
1782 lines (1630 loc) · 74.5 KB
/
curves.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'dart:ui';
import 'package:flutter/cupertino.dart';
import 'package:flutter/foundation.dart';
export 'dart:ui' show Offset;
/// An abstract class providing an interface for evaluating a parametric curve.
///
/// A parametric curve transforms a parameter (hence the name) `t` along a curve
/// to the value of the curve at that value of `t`. The curve can be of
/// arbitrary dimension, but is typically a 1D, 2D, or 3D curve.
///
/// See also:
///
/// * [Curve], a 1D animation easing curve that starts at 0.0 and ends at 1.0.
/// * [Curve2D], a parametric curve that transforms the parameter to a 2D point.
abstract class ParametricCurve<T> {
/// Abstract const constructor to enable subclasses to provide
/// const constructors so that they can be used in const expressions.
const ParametricCurve();
/// Returns the value of the curve at point `t`.
///
/// This method asserts that t is between 0 and 1 before delegating to
/// [transformInternal].
///
/// It is recommended that subclasses override [transformInternal] instead of
/// this function, as the above case is already handled in the default
/// implementation of [transform], which delegates the remaining logic to
/// [transformInternal].
T transform(double t) {
assert(t >= 0.0 && t <= 1.0, 'parametric value $t is outside of [0, 1] range.');
return transformInternal(t);
}
/// Returns the value of the curve at point `t`.
///
/// The given parametric value `t` will be between 0.0 and 1.0, inclusive.
@protected
T transformInternal(double t) {
throw UnimplementedError();
}
@override
String toString() => objectRuntimeType(this, 'ParametricCurve');
}
/// An parametric animation easing curve, i.e. a mapping of the unit interval to
/// the unit interval.
///
/// Easing curves are used to adjust the rate of change of an animation over
/// time, allowing them to speed up and slow down, rather than moving at a
/// constant rate.
///
/// A [Curve] must map t=0.0 to 0.0 and t=1.0 to 1.0.
///
/// See also:
///
/// * [Curves], a collection of common animation easing curves.
/// * [CurveTween], which can be used to apply a [Curve] to an [Animation].
/// * [Canvas.drawArc], which draws an arc, and has nothing to do with easing
/// curves.
/// * [Animatable], for a more flexible interface that maps fractions to
/// arbitrary values.
@immutable
abstract class Curve extends ParametricCurve<double> {
/// Abstract const constructor to enable subclasses to provide
/// const constructors so that they can be used in const expressions.
const Curve();
/// Returns the value of the curve at point `t`.
///
/// This function must ensure the following:
/// - The value of `t` must be between 0.0 and 1.0
/// - Values of `t`=0.0 and `t`=1.0 must be mapped to 0.0 and 1.0,
/// respectively.
///
/// It is recommended that subclasses override [transformInternal] instead of
/// this function, as the above cases are already handled in the default
/// implementation of [transform], which delegates the remaining logic to
/// [transformInternal].
@override
double transform(double t) {
if (t == 0.0 || t == 1.0) {
return t;
}
return super.transform(t);
}
/// Returns a new curve that is the reversed inversion of this one.
///
/// This is often useful with [CurvedAnimation.reverseCurve].
///
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_bounce_in.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_flipped.mp4}
///
/// See also:
///
/// * [FlippedCurve], the class that is used to implement this getter.
/// * [ReverseAnimation], which reverses an [Animation] rather than a [Curve].
/// * [CurvedAnimation], which can take a separate curve and reverse curve.
Curve get flipped => FlippedCurve(this);
}
/// The identity map over the unit interval.
///
/// See [Curves.linear] for an instance of this class.
class _Linear extends Curve {
const _Linear._();
@override
double transformInternal(double t) => t;
}
/// A sawtooth curve that repeats a given number of times over the unit interval.
///
/// The curve rises linearly from 0.0 to 1.0 and then falls discontinuously back
/// to 0.0 each iteration.
///
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_sawtooth.mp4}
class SawTooth extends Curve {
/// Creates a sawtooth curve.
///
/// The [count] argument must not be null.
const SawTooth(this.count);
/// The number of repetitions of the sawtooth pattern in the unit interval.
final int count;
@override
double transformInternal(double t) {
t *= count;
return t - t.truncateToDouble();
}
@override
String toString() {
return '${objectRuntimeType(this, 'SawTooth')}($count)';
}
}
/// A curve that is 0.0 until [begin], then curved (according to [curve]) from
/// 0.0 at [begin] to 1.0 at [end], then remains 1.0 past [end].
///
/// An [Interval] can be used to delay an animation. For example, a six second
/// animation that uses an [Interval] with its [begin] set to 0.5 and its [end]
/// set to 1.0 will essentially become a three-second animation that starts
/// three seconds later.
///
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_interval.mp4}
class Interval extends Curve {
/// Creates an interval curve.
///
/// The arguments must not be null.
const Interval(this.begin, this.end, { this.curve = Curves.linear });
/// The largest value for which this interval is 0.0.
///
/// From t=0.0 to t=[begin], the interval's value is 0.0.
final double begin;
/// The smallest value for which this interval is 1.0.
///
/// From t=[end] to t=1.0, the interval's value is 1.0.
final double end;
/// The curve to apply between [begin] and [end].
final Curve curve;
@override
double transformInternal(double t) {
assert(begin >= 0.0);
assert(begin <= 1.0);
assert(end >= 0.0);
assert(end <= 1.0);
assert(end >= begin);
t = clampDouble((t - begin) / (end - begin), 0.0, 1.0);
if (t == 0.0 || t == 1.0) {
return t;
}
return curve.transform(t);
}
@override
String toString() {
if (curve is! _Linear) {
return '${objectRuntimeType(this, 'Interval')}($begin\u22EF$end)\u27A9$curve';
}
return '${objectRuntimeType(this, 'Interval')}($begin\u22EF$end)';
}
}
/// A curve that is 0.0 until it hits the threshold, then it jumps to 1.0.
///
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_threshold.mp4}
class Threshold extends Curve {
/// Creates a threshold curve.
///
/// The [threshold] argument must not be null.
const Threshold(this.threshold);
/// The value before which the curve is 0.0 and after which the curve is 1.0.
///
/// When t is exactly [threshold], the curve has the value 1.0.
final double threshold;
@override
double transformInternal(double t) {
assert(threshold >= 0.0);
assert(threshold <= 1.0);
return t < threshold ? 0.0 : 1.0;
}
}
/// A cubic polynomial mapping of the unit interval.
///
/// The [Curves] class contains some commonly used cubic curves:
///
/// * [Curves.fastLinearToSlowEaseIn]
/// * [Curves.ease]
/// * [Curves.easeIn]
/// * [Curves.easeInToLinear]
/// * [Curves.easeInSine]
/// * [Curves.easeInQuad]
/// * [Curves.easeInCubic]
/// * [Curves.easeInQuart]
/// * [Curves.easeInQuint]
/// * [Curves.easeInExpo]
/// * [Curves.easeInCirc]
/// * [Curves.easeInBack]
/// * [Curves.easeOut]
/// * [Curves.linearToEaseOut]
/// * [Curves.easeOutSine]
/// * [Curves.easeOutQuad]
/// * [Curves.easeOutCubic]
/// * [Curves.easeOutQuart]
/// * [Curves.easeOutQuint]
/// * [Curves.easeOutExpo]
/// * [Curves.easeOutCirc]
/// * [Curves.easeOutBack]
/// * [Curves.easeInOut]
/// * [Curves.easeInOutSine]
/// * [Curves.easeInOutQuad]
/// * [Curves.easeInOutCubic]
/// * [Curves.easeInOutQuart]
/// * [Curves.easeInOutQuint]
/// * [Curves.easeInOutExpo]
/// * [Curves.easeInOutCirc]
/// * [Curves.easeInOutBack]
/// * [Curves.fastOutSlowIn]
/// * [Curves.slowMiddle]
///
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_fast_linear_to_slow_ease_in.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_to_linear.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_sine.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_quad.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_cubic.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_quart.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_quint.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_expo.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_circ.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_back.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_linear_to_ease_out.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_sine.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_quad.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_cubic.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_quart.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_quint.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_expo.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_circ.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_out_back.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_sine.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_quad.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_cubic.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_quart.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_quint.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_expo.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_circ.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_ease_in_out_back.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_fast_out_slow_in.mp4}
/// {@animation 464 192 https://flutter.github.io/assets-for-api-docs/assets/animation/curve_slow_middle.mp4}
///
/// The [Cubic] class implements third-order Bézier curves.
///
/// See also:
///
/// * [Curves], where many more predefined curves are available.
/// * [CatmullRomCurve], a curve which passes through specific values.
class Cubic extends Curve {
/// Creates a cubic curve.
///
/// Rather than creating a new instance, consider using one of the common
/// cubic curves in [Curves].
///
/// The [a] (x1), [b] (y1), [c] (x2) and [d] (y2) arguments must not be null.
const Cubic(this.a, this.b, this.c, this.d);
/// The x coordinate of the first control point.
///
/// The line through the point (0, 0) and the first control point is tangent
/// to the curve at the point (0, 0).
final double a;
/// The y coordinate of the first control point.
///
/// The line through the point (0, 0) and the first control point is tangent
/// to the curve at the point (0, 0).
final double b;
/// The x coordinate of the second control point.
///
/// The line through the point (1, 1) and the second control point is tangent
/// to the curve at the point (1, 1).
final double c;
/// The y coordinate of the second control point.
///
/// The line through the point (1, 1) and the second control point is tangent
/// to the curve at the point (1, 1).
final double d;
static const double _cubicErrorBound = 0.001;
double _evaluateCubic(double a, double b, double m) {
return 3 * a * (1 - m) * (1 - m) * m +
3 * b * (1 - m) * m * m +
m * m * m;
}
@override
double transformInternal(double t) {
double start = 0.0;
double end = 1.0;
while (true) {
final double midpoint = (start + end) / 2;
final double estimate = _evaluateCubic(a, c, midpoint);
if ((t - estimate).abs() < _cubicErrorBound) {
return _evaluateCubic(b, d, midpoint);
}
if (estimate < t) {
start = midpoint;
} else {
end = midpoint;
}
}
}
@override
String toString() {
return '${objectRuntimeType(this, 'Cubic')}(${a.toStringAsFixed(2)}, ${b.toStringAsFixed(2)}, ${c.toStringAsFixed(2)}, ${d.toStringAsFixed(2)})';
}
}
/// A cubic polynomial composed of two curves that share a common center point.
///
/// The curve runs through three points: (0,0), the [midpoint], and (1,1).
///
/// The [Curves] class contains a curve defined with this class:
/// [Curves.easeInOutCubicEmphasized].
///
/// The [ThreePointCubic] class implements third-order Bézier curves, where two
/// curves share an interior [midpoint] that the curve passes through. If the
/// control points surrounding the middle point ([b1], and [a2]) are not
/// colinear with the middle point, then the curve's derivative will have a
/// discontinuity (a cusp) at the shared middle point.
///
/// See also:
///
/// * [Curves], where many more predefined curves are available.
/// * [Cubic], which defines a single cubic polynomial.
/// * [CatmullRomCurve], a curve which passes through specific values.
class ThreePointCubic extends Curve {
/// Creates two cubic curves that share a common control point.
///
/// Rather than creating a new instance, consider using one of the common
/// three-point cubic curves in [Curves].
///
/// The arguments correspond to the control points for the two curves,
/// including the [midpoint], but do not include the two implied end points at
/// (0,0) and (1,1), which are fixed.
const ThreePointCubic(this.a1, this.b1, this.midpoint, this.a2, this.b2);
/// The coordinates of the first control point of the first curve.
///
/// The line through the point (0, 0) and this control point is tangent to the
/// curve at the point (0, 0).
final Offset a1;
/// The coordinates of the second control point of the first curve.
///
/// The line through the [midpoint] and this control point is tangent to the
/// curve approaching the [midpoint].
final Offset b1;
/// The coordinates of the middle shared point.
///
/// The curve will go through this point. If the control points surrounding
/// this middle point ([b1], and [a2]) are not colinear with this point, then
/// the curve's derivative will have a discontinuity (a cusp) at this point.
final Offset midpoint;
/// The coordinates of the first control point of the second curve.
///
/// The line through the [midpoint] and this control point is tangent to the
/// curve approaching the [midpoint].
final Offset a2;
/// The coordinates of the second control point of the second curve.
///
/// The line through the point (1, 1) and this control point is tangent to the
/// curve at (1, 1).
final Offset b2;
@override
double transformInternal(double t) {
final bool firstCurve = t < midpoint.dx;
final double scaleX = firstCurve ? midpoint.dx : 1.0 - midpoint.dx;
final double scaleY = firstCurve ? midpoint.dy : 1.0 - midpoint.dy;
final double scaledT = (t - (firstCurve ? 0.0 : midpoint.dx)) / scaleX;
if (firstCurve) {
return Cubic(
a1.dx / scaleX,
a1.dy / scaleY,
b1.dx / scaleX,
b1.dy / scaleY,
).transform(scaledT) * scaleY;
} else {
return Cubic(
(a2.dx - midpoint.dx) / scaleX,
(a2.dy - midpoint.dy) / scaleY,
(b2.dx - midpoint.dx) / scaleX,
(b2.dy - midpoint.dy) / scaleY,
).transform(scaledT) * scaleY + midpoint.dy;
}
}
@override
String toString() {
return '${objectRuntimeType(this, 'ThreePointCubic($a1, $b1, $midpoint, $a2, $b2)')} ';
}
}
/// Abstract class that defines an API for evaluating 2D parametric curves.
///
/// [Curve2D] differs from [Curve] in that the values interpolated are [Offset]
/// values instead of [double] values, hence the "2D" in the name. They both
/// take a single double `t` that has a range of 0.0 to 1.0, inclusive, as input
/// to the [transform] function . Unlike [Curve], [Curve2D] is not required to
/// map `t=0.0` and `t=1.0` to specific output values.
///
/// The interpolated `t` value given to [transform] represents the progression
/// along the curve, but it doesn't necessarily progress at a constant velocity, so
/// incrementing `t` by, say, 0.1 might move along the curve by quite a lot at one
/// part of the curve, or hardly at all in another part of the curve, depending
/// on the definition of the curve.
///
/// {@tool dartpad}
/// This example shows how to use a [Curve2D] to modify the position of a widget
/// so that it can follow an arbitrary path.
///
/// ** See code in examples/api/lib/animation/curves/curve2_d.0.dart **
/// {@end-tool}
///
abstract class Curve2D extends ParametricCurve<Offset> {
/// Abstract const constructor to enable subclasses to provide const
/// constructors so that they can be used in const expressions.
const Curve2D();
/// Generates a list of samples with a recursive subdivision until a tolerance
/// of `tolerance` is reached.
///
/// Samples are generated in order.
///
/// Samples can be used to render a curve efficiently, since the samples
/// constitute line segments which vary in size with the curvature of the
/// curve. They can also be used to quickly approximate the value of the curve
/// by searching for the desired range in X and linearly interpolating between
/// samples to obtain an approximation of Y at the desired X value. The
/// implementation of [CatmullRomCurve] uses samples for this purpose
/// internally.
///
/// The tolerance is computed as the area of a triangle formed by a new point
/// and the preceding and following point.
///
/// See also:
///
/// * Luiz Henrique de Figueire's Graphics Gem on [the algorithm](http://ariel.chronotext.org/dd/defigueiredo93adaptive.pdf).
Iterable<Curve2DSample> generateSamples({
double start = 0.0,
double end = 1.0,
double tolerance = 1e-10,
}) {
// The sampling algorithm is:
// 1. Evaluate the area of the triangle (a proxy for the "flatness" of the
// curve) formed by two points and a test point.
// 2. If the area of the triangle is small enough (below tolerance), then
// the two points form the final segment.
// 3. If the area is still too large, divide the interval into two parts
// using a random subdivision point to avoid aliasing.
// 4. Recursively sample the two parts.
//
// This algorithm concentrates samples in areas of high curvature.
assert(end > start);
// We want to pick a random seed that will keep the result stable if
// evaluated again, so we use the first non-generated control point.
final math.Random rand = math.Random(samplingSeed);
bool isFlat(Offset p, Offset q, Offset r) {
// Calculates the area of the triangle given by the three points.
final Offset pr = p - r;
final Offset qr = q - r;
final double z = pr.dx * qr.dy - qr.dx * pr.dy;
return (z * z) < tolerance;
}
final Curve2DSample first = Curve2DSample(start, transform(start));
final Curve2DSample last = Curve2DSample(end, transform(end));
final List<Curve2DSample> samples = <Curve2DSample>[first];
void sample(Curve2DSample p, Curve2DSample q, {bool forceSubdivide = false}) {
// Pick a random point somewhat near the center, which avoids aliasing
// problems with periodic curves.
final double t = p.t + (0.45 + 0.1 * rand.nextDouble()) * (q.t - p.t);
final Curve2DSample r = Curve2DSample(t, transform(t));
if (!forceSubdivide && isFlat(p.value, q.value, r.value)) {
samples.add(q);
} else {
sample(p, r);
sample(r, q);
}
}
// If the curve starts and ends on the same point, then we force it to
// subdivide at least once, because otherwise it will terminate immediately.
sample(
first,
last,
forceSubdivide: (first.value.dx - last.value.dx).abs() < tolerance && (first.value.dy - last.value.dy).abs() < tolerance,
);
return samples;
}
/// Returns a seed value used by [generateSamples] to seed a random number
/// generator to avoid sample aliasing.
///
/// Subclasses should override this and provide a custom seed.
///
/// The value returned should be the same each time it is called, unless the
/// curve definition changes.
@protected
int get samplingSeed => 0;
/// Returns the parameter `t` that corresponds to the given x value of the spline.
///
/// This will only work properly for curves which are single-valued in x
/// (where every value of `x` maps to only one value in 'y', i.e. the curve
/// does not loop or curve back over itself). For curves that are not
/// single-valued, it will return the parameter for only one of the values at
/// the given `x` location.
double findInverse(double x) {
double start = 0.0;
double end = 1.0;
late double mid;
double offsetToOrigin(double pos) => x - transform(pos).dx;
// Use a binary search to find the inverse point within 1e-6, or 100
// subdivisions, whichever comes first.
const double errorLimit = 1e-6;
int count = 100;
final double startValue = offsetToOrigin(start);
while ((end - start) / 2.0 > errorLimit && count > 0) {
mid = (end + start) / 2.0;
final double value = offsetToOrigin(mid);
if (value.sign == startValue.sign) {
start = mid;
} else {
end = mid;
}
count--;
}
return mid;
}
}
/// A class that holds a sample of a 2D parametric curve, containing the [value]
/// (the X, Y coordinates) of the curve at the parametric value [t].
///
/// See also:
///
/// * [Curve2D.generateSamples], which generates samples of this type.
/// * [Curve2D], a parametric curve that maps a double parameter to a 2D location.
class Curve2DSample {
/// Creates an object that holds a sample; used with [Curve2D] subclasses.
///
/// All arguments must not be null.
const Curve2DSample(this.t, this.value);
/// The parametric location of this sample point along the curve.
final double t;
/// The value (the X, Y coordinates) of the curve at parametric value [t].
final Offset value;
@override
String toString() {
return '[(${value.dx.toStringAsFixed(2)}, ${value.dy.toStringAsFixed(2)}), ${t.toStringAsFixed(2)}]';
}
}
/// A 2D spline that passes smoothly through the given control points using a
/// centripetal Catmull-Rom spline.
///
/// When the curve is evaluated with [transform], the output values will move
/// smoothly from one control point to the next, passing through the control
/// points.
///
/// {@template flutter.animation.CatmullRomSpline}
/// Unlike most cubic splines, Catmull-Rom splines have the advantage that their
/// curves pass through the control points given to them. They are cubic
/// polynomial representations, and, in fact, Catmull-Rom splines can be
/// converted mathematically into cubic splines. This class implements a
/// "centripetal" Catmull-Rom spline. The term centripetal implies that it won't
/// form loops or self-intersections within a single segment.
/// {@endtemplate}
///
/// See also:
/// * [Centripetal Catmull–Rom splines](https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline)
/// on Wikipedia.
/// * [Parameterization and Applications of Catmull-Rom Curves](http://faculty.cs.tamu.edu/schaefer/research/cr_cad.pdf),
/// a paper on using Catmull-Rom splines.
/// * [CatmullRomCurve], an animation curve that uses a [CatmullRomSpline] as its
/// internal representation.
class CatmullRomSpline extends Curve2D {
/// Constructs a centripetal Catmull-Rom spline curve.
///
/// The `controlPoints` argument is a list of four or more points that
/// describe the points that the curve must pass through.
///
/// The optional `tension` argument controls how tightly the curve approaches
/// the given `controlPoints`. It must be in the range 0.0 to 1.0, inclusive. It
/// defaults to 0.0, which provides the smoothest curve. A value of 1.0
/// produces a linear interpolation between points.
///
/// The optional `endHandle` and `startHandle` points are the beginning and
/// ending handle positions. If not specified, they are created automatically
/// by extending the line formed by the first and/or last line segment in the
/// `controlPoints`, respectively. The spline will not go through these handle
/// points, but they will affect the slope of the line at the beginning and
/// end of the spline. The spline will attempt to match the slope of the line
/// formed by the start or end handle and the neighboring first or last
/// control point. The default is chosen so that the slope of the line at the
/// ends matches that of the first or last line segment in the control points.
///
/// The `tension` and `controlPoints` arguments must not be null, and the
/// `controlPoints` list must contain at least four control points to
/// interpolate.
///
/// The internal curve data structures are lazily computed the first time
/// [transform] is called. If you would rather pre-compute the structures,
/// use [CatmullRomSpline.precompute] instead.
CatmullRomSpline(
List<Offset> controlPoints, {
double tension = 0.0,
Offset? startHandle,
Offset? endHandle,
}) : assert(tension <= 1.0, 'tension $tension must not be greater than 1.0.'),
assert(tension >= 0.0, 'tension $tension must not be negative.'),
assert(controlPoints.length > 3, 'There must be at least four control points to create a CatmullRomSpline.'),
_controlPoints = controlPoints,
_startHandle = startHandle,
_endHandle = endHandle,
_tension = tension,
_cubicSegments = <List<Offset>>[];
/// Constructs a centripetal Catmull-Rom spline curve.
///
/// The same as [CatmullRomSpline.new], except that the internal data
/// structures are precomputed instead of being computed lazily.
CatmullRomSpline.precompute(
List<Offset> controlPoints, {
double tension = 0.0,
Offset? startHandle,
Offset? endHandle,
}) : assert(tension <= 1.0, 'tension $tension must not be greater than 1.0.'),
assert(tension >= 0.0, 'tension $tension must not be negative.'),
assert(controlPoints.length > 3, 'There must be at least four control points to create a CatmullRomSpline.'),
_controlPoints = null,
_startHandle = null,
_endHandle = null,
_tension = null,
_cubicSegments = _computeSegments(controlPoints, tension, startHandle: startHandle, endHandle: endHandle);
static List<List<Offset>> _computeSegments(
List<Offset> controlPoints,
double tension, {
Offset? startHandle,
Offset? endHandle,
}) {
// If not specified, select the first and last control points (which are
// handles: they are not intersected by the resulting curve) so that they
// extend the first and last segments, respectively.
startHandle ??= controlPoints[0] * 2.0 - controlPoints[1];
endHandle ??= controlPoints.last * 2.0 - controlPoints[controlPoints.length - 2];
final List<Offset> allPoints = <Offset>[
startHandle,
...controlPoints,
endHandle,
];
// An alpha of 0.5 is what makes it a centripetal Catmull-Rom spline. A
// value of 0.0 would make it a uniform Catmull-Rom spline, and a value of
// 1.0 would make it a chordal Catmull-Rom spline. Non-centripetal values
// for alpha can give self-intersecting behavior or looping within a
// segment.
const double alpha = 0.5;
final double reverseTension = 1.0 - tension;
final List<List<Offset>> result = <List<Offset>>[];
for (int i = 0; i < allPoints.length - 3; ++i) {
final List<Offset> curve = <Offset>[allPoints[i], allPoints[i + 1], allPoints[i + 2], allPoints[i + 3]];
final Offset diffCurve10 = curve[1] - curve[0];
final Offset diffCurve21 = curve[2] - curve[1];
final Offset diffCurve32 = curve[3] - curve[2];
final double t01 = math.pow(diffCurve10.distance, alpha).toDouble();
final double t12 = math.pow(diffCurve21.distance, alpha).toDouble();
final double t23 = math.pow(diffCurve32.distance, alpha).toDouble();
final Offset m1 = (diffCurve21 + (diffCurve10 / t01 - (curve[2] - curve[0]) / (t01 + t12)) * t12) * reverseTension;
final Offset m2 = (diffCurve21 + (diffCurve32 / t23 - (curve[3] - curve[1]) / (t12 + t23)) * t12) * reverseTension;
final Offset sumM12 = m1 + m2;
final List<Offset> segment = <Offset>[
diffCurve21 * -2.0 + sumM12,
diffCurve21 * 3.0 - m1 - sumM12,
m1,
curve[1],
];
result.add(segment);
}
return result;
}
// The list of control point lists for each cubic segment of the spline.
final List<List<Offset>> _cubicSegments;
// This is non-empty only if the _cubicSegments are being computed lazily.
final List<Offset>? _controlPoints;
final Offset? _startHandle;
final Offset? _endHandle;
final double? _tension;
void _initializeIfNeeded() {
if (_cubicSegments.isNotEmpty) {
return;
}
_cubicSegments.addAll(
_computeSegments(_controlPoints!, _tension!, startHandle: _startHandle, endHandle: _endHandle),
);
}
@override
@protected
int get samplingSeed {
_initializeIfNeeded();
final Offset seedPoint = _cubicSegments[0][1];
return ((seedPoint.dx + seedPoint.dy) * 10000).round();
}
@override
Offset transformInternal(double t) {
_initializeIfNeeded();
final double length = _cubicSegments.length.toDouble();
final double position;
final double localT;
final int index;
if (t < 1.0) {
position = t * length;
localT = position % 1.0;
index = position.floor();
} else {
position = length;
localT = 1.0;
index = _cubicSegments.length - 1;
}
final List<Offset> cubicControlPoints = _cubicSegments[index];
final double localT2 = localT * localT;
return cubicControlPoints[0] * localT2 * localT
+ cubicControlPoints[1] * localT2
+ cubicControlPoints[2] * localT
+ cubicControlPoints[3];
}
}
/// An animation easing curve that passes smoothly through the given control
/// points using a centripetal Catmull-Rom spline.
///
/// When this curve is evaluated with [transform], the values will interpolate
/// smoothly from one control point to the next, passing through (0.0, 0.0), the
/// given points, and then (1.0, 1.0).
///
/// {@macro flutter.animation.CatmullRomSpline}
///
/// This class uses a centripetal Catmull-Rom curve (a [CatmullRomSpline]) as
/// its internal representation. The term centripetal implies that it won't form
/// loops or self-intersections within a single segment, and corresponds to a
/// Catmull-Rom α (alpha) value of 0.5.
///
/// See also:
///
/// * [CatmullRomSpline], the 2D spline that this curve uses to generate its values.
/// * A Wikipedia article on [centripetal Catmull-Rom splines](https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline).
/// * [CatmullRomCurve.new] for a description of the constraints put on the
/// input control points.
/// * This [paper on using Catmull-Rom splines](http://faculty.cs.tamu.edu/schaefer/research/cr_cad.pdf).
class CatmullRomCurve extends Curve {
/// Constructs a centripetal [CatmullRomCurve].
///
/// It takes a list of two or more points that describe the points that the
/// curve must pass through. See [controlPoints] for a description of the
/// restrictions placed on control points. In addition to the given
/// [controlPoints], the curve will begin with an implicit control point at
/// (0.0, 0.0) and end with an implicit control point at (1.0, 1.0), so that
/// the curve begins and ends at those points.
///
/// The optional [tension] argument controls how tightly the curve approaches
/// the given `controlPoints`. It must be in the range 0.0 to 1.0, inclusive. It
/// defaults to 0.0, which provides the smoothest curve. A value of 1.0
/// is equivalent to a linear interpolation between points.
///
/// The internal curve data structures are lazily computed the first time
/// [transform] is called. If you would rather pre-compute the curve, use
/// [CatmullRomCurve.precompute] instead.
///
/// All of the arguments must not be null.
///
/// See also:
///
/// * This [paper on using Catmull-Rom splines](http://faculty.cs.tamu.edu/schaefer/research/cr_cad.pdf).
CatmullRomCurve(this.controlPoints, {this.tension = 0.0})
: assert(() {
return validateControlPoints(
controlPoints,
tension: tension,
reasons: _debugAssertReasons..clear(),
);
}(), 'control points $controlPoints could not be validated:\n ${_debugAssertReasons.join('\n ')}'),
// Pre-compute samples so that we don't have to evaluate the spline's inverse
// all the time in transformInternal.
_precomputedSamples = <Curve2DSample>[];
/// Constructs a centripetal [CatmullRomCurve].
///
/// Same as [CatmullRomCurve.new], but it precomputes the internal curve data
/// structures for a more predictable computation load.
CatmullRomCurve.precompute(this.controlPoints, {this.tension = 0.0})
: assert(() {
return validateControlPoints(
controlPoints,
tension: tension,
reasons: _debugAssertReasons..clear(),
);
}(), 'control points $controlPoints could not be validated:\n ${_debugAssertReasons.join('\n ')}'),
// Pre-compute samples so that we don't have to evaluate the spline's inverse
// all the time in transformInternal.
_precomputedSamples = _computeSamples(controlPoints, tension);
static List<Curve2DSample> _computeSamples(List<Offset> controlPoints, double tension) {
return CatmullRomSpline.precompute(
// Force the first and last control points for the spline to be (0, 0)
// and (1, 1), respectively.
<Offset>[Offset.zero, ...controlPoints, const Offset(1.0, 1.0)],
tension: tension,
).generateSamples(tolerance: 1e-12).toList();
}
/// A static accumulator for assertion failures. Not used in release mode.
static final List<String> _debugAssertReasons = <String>[];
// The precomputed approximation curve, so that evaluation of the curve is
// efficient.
//
// If the curve is constructed lazily, then this will be empty, and will be filled
// the first time transform is called.
final List<Curve2DSample> _precomputedSamples;
/// The control points used to create this curve.
///
/// The `dx` value of each [Offset] in [controlPoints] represents the
/// animation value at which the curve should pass through the `dy` value of
/// the same control point.
///
/// The [controlPoints] list must meet the following criteria:
///
/// * The list must contain at least two points.
/// * The X value of each point must be greater than 0.0 and less then 1.0.
/// * The X values of each point must be greater than the
/// previous point's X value (i.e. monotonically increasing). The Y values
/// are not constrained.
/// * The resulting spline must be single-valued in X. That is, for each X
/// value, there must be exactly one Y value. This means that the control
/// points must not generated a spline that loops or overlaps itself.
///
/// The static function [validateControlPoints] can be used to check that
/// these conditions are met, and will return true if they are. In debug mode,
/// it will also optionally return a list of reasons in text form. In debug
/// mode, the constructor will assert that these conditions are met and print
/// the reasons if the assert fires.
///
/// When the curve is evaluated with [transform], the values will interpolate
/// smoothly from one control point to the next, passing through (0.0, 0.0), the
/// given control points, and (1.0, 1.0).
final List<Offset> controlPoints;
/// The "tension" of the curve.
///
/// The [tension] attribute controls how tightly the curve approaches the
/// given [controlPoints]. It must be in the range 0.0 to 1.0, inclusive. It
/// is optional, and defaults to 0.0, which provides the smoothest curve. A
/// value of 1.0 is equivalent to a linear interpolation between control
/// points.
final double tension;
/// Validates that a given set of control points for a [CatmullRomCurve] is
/// well-formed and will not produce a spline that self-intersects.
///
/// This method is also used in debug mode to validate a curve to make sure
/// that it won't violate the contract for the [CatmullRomCurve.new]
/// constructor.
///
/// If in debug mode, and `reasons` is non-null, this function will fill in
/// `reasons` with descriptions of the problems encountered. The `reasons`
/// argument is ignored in release mode.
///
/// In release mode, this function can be used to decide if a proposed
/// modification to the curve will result in a valid curve.
static bool validateControlPoints(
List<Offset>? controlPoints, {
double tension = 0.0,
List<String>? reasons,
}) {
if (controlPoints == null) {
assert(() {
reasons?.add('Supplied control points cannot be null');
return true;
}());
return false;
}
if (controlPoints.length < 2) {
assert(() {
reasons?.add('There must be at least two points supplied to create a valid curve.');
return true;
}());
return false;
}
controlPoints = <Offset>[Offset.zero, ...controlPoints, const Offset(1.0, 1.0)];
final Offset startHandle = controlPoints[0] * 2.0 - controlPoints[1];
final Offset endHandle = controlPoints.last * 2.0 - controlPoints[controlPoints.length - 2];
controlPoints = <Offset>[startHandle, ...controlPoints, endHandle];
double lastX = -double.infinity;
for (int i = 0; i < controlPoints.length; ++i) {
if (i > 1 &&
i < controlPoints.length - 2 &&
(controlPoints[i].dx <= 0.0 || controlPoints[i].dx >= 1.0)) {
assert(() {
reasons?.add(
'Control points must have X values between 0.0 and 1.0, exclusive. '
'Point $i has an x value (${controlPoints![i].dx}) which is outside the range.',
);
return true;
}());
return false;
}
if (controlPoints[i].dx <= lastX) {
assert(() {
reasons?.add(
'Each X coordinate must be greater than the preceding X coordinate '
'(i.e. must be monotonically increasing in X). Point $i has an x value of '
'${controlPoints![i].dx}, which is not greater than $lastX',
);
return true;
}());
return false;
}
lastX = controlPoints[i].dx;
}
bool success = true;
// An empirical test to make sure things are single-valued in X.
lastX = -double.infinity;