-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapprox_topk_test.py
254 lines (211 loc) · 9.2 KB
/
approx_topk_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for approx_max_k and approx_min_k."""
import itertools
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.eager import test
from tensorflow.python.eager.def_function import function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variables
class ApproxTopkTest(test.TestCase, parameterized.TestCase):
def setUp(self):
test.TestCase.setUp(self)
self._rng = np.random.default_rng(42)
def compute_recall(self, result_neighbors, ground_truth_neighbors):
"""Computes the recall of an approximate nearest neighbor search.
Args:
result_neighbors: int32 numpy array of the shape [num_queries,
neighbors_per_query] where the values are the indices of the dataset.
ground_truth_neighbors: int32 numpy array of with shape [num_queries,
ground_truth_neighbors_per_query] where the values are the indices of
the dataset.
Returns:
The recall.
"""
self.assertLen(result_neighbors.shape, 2)
self.assertLen(ground_truth_neighbors.shape, 2)
self.assertEqual(result_neighbors.shape[0], ground_truth_neighbors.shape[0])
gt_sets = [set(np.asarray(x)) for x in ground_truth_neighbors]
def hits_per_q(q, nn_per_q):
return len(list(x for x in nn_per_q if x.item() in gt_sets[q]))
hits = sum(
hits_per_q(q, nn_per_q) for q, nn_per_q in enumerate(result_neighbors))
return hits / ground_truth_neighbors.size
@parameterized.parameters(
itertools.product(
[1, 10], # k
[100, 500], # row_size
[1, 10, 128], # num_rows
[True, False], # aggregate_to_topk
))
def test_non_fused_max_k(self, k, row_size, num_rows, aggregate_to_topk):
row = np.arange(row_size, dtype=np.float32)
db = np.stack(list(self._rng.permutation(row) for _ in range(num_rows)))
@function(jit_compile=True)
def ann(db, k):
return nn_ops.approx_max_k(db, k, aggregate_to_topk=aggregate_to_topk)
with ops.device('/device:TPU:0'):
db_op = variables.Variable(db)
result = ann(db_op, k)[1]
gt = np.argsort(-db)[:, :k]
ann_recall = self.compute_recall(result.numpy(), gt)
self.assertGreaterEqual(ann_recall, 0.95)
@parameterized.parameters(
itertools.product(
[1, 10], # k
[100, 500], # row_size
[1, 10, 128], # num_rows
[True, False], # aggregate_to_topk
))
def test_non_fused_min_k(self, k, row_size, num_rows, aggregate_to_topk):
# Use the new rng api
row = np.arange(row_size, dtype=np.float32)
db = np.stack(list(self._rng.permutation(row) for _ in range(num_rows)))
@function(jit_compile=True)
def ann(db, k=10):
return nn_ops.approx_min_k(db, k, aggregate_to_topk=aggregate_to_topk)
with ops.device('/device:TPU:0'):
db_op = variables.Variable(db)
result = ann(db_op, k)[1]
gt = np.argsort(db)[:, :k]
ann_recall = self.compute_recall(result.numpy(), gt)
self.assertGreaterEqual(ann_recall, 0.95)
@parameterized.parameters(
itertools.product(
[1, 10], # k
[100, 500], # db_size
[1, 10, 128], # qy_size
[2, 32], # feature dim
))
# MIPS = Maximal Inner Product Search
def test_mips(self, k, db_size, qy_size, feature_dim):
qy = self._rng.random([qy_size, feature_dim], dtype=np.float32)
db = self._rng.random([db_size, feature_dim], dtype=np.float32)
@function(jit_compile=True)
def ann(qy, db, k):
scores = math_ops.matmul(qy, db, transpose_b=True)
return nn_ops.approx_max_k(scores, k)
with ops.device('/device:TPU:0'):
qy_op = variables.Variable(qy)
db_op = variables.Variable(db)
result = ann(qy_op, db_op, k)[1]
scores = -math_ops.matmul(qy_op, db_op, transpose_b=True)
gt = np.argsort(scores.numpy())[:, :k]
ann_recall = self.compute_recall(result.numpy(), gt)
self.assertGreaterEqual(ann_recall, 0.95)
@parameterized.parameters(
itertools.product(
[1, 10], # k
[100, 500], # db_size
[10, 128], # qy_size
[2, 8], # feature dim
))
# L2ANN = Approximate Nearest Neighbor search in the L2 metric space
def test_l2ann(self, k, db_size, qy_size, feature_dim):
qy = self._rng.random([qy_size, feature_dim], dtype=np.float32)
db = self._rng.random([db_size, feature_dim], dtype=np.float32)
db_half_norm_sq = np.linalg.norm(db, axis=1)**2 / 2
@function(jit_compile=True)
def ann(qy, db, db_half_norm_sq, k):
scores = db_half_norm_sq - math_ops.matmul(qy, db, transpose_b=True)
return nn_ops.approx_min_k(scores, k)
with ops.device('/device:TPU:0'):
qy_op = variables.Variable(qy)
db_op = variables.Variable(db)
db_half_norm_sq_op = variables.Variable(db_half_norm_sq)
result = ann(qy_op, db_op, db_half_norm_sq_op, k)[1]
scores = db_half_norm_sq_op - math_ops.matmul(
qy_op, db_op, transpose_b=True)
gt = np.argsort(scores.numpy())[:, :k]
ann_recall = self.compute_recall(result.numpy(), gt)
self.assertGreaterEqual(ann_recall, 0.95)
def test_highdim(self):
db = self._rng.random([2, 10, 200, 3], dtype=np.float32)
k = 5
@function(jit_compile=True)
def ann(db, k):
return nn_ops.approx_min_k(db, k=k, reduction_dimension=2)
with ops.device('/device:TPU:0'):
db_op = variables.Variable(db)
result = ann(db_op, k)[1]
gt = np.argsort(db, axis=2)[:, :, :k, :]
flat_idx = np.reshape(
np.transpose(result.numpy(), [0, 1, 3, 2]), [2 * 10 * 3, k])
flat_gt = np.reshape(np.transpose(gt, [0, 1, 3, 2]), [2 * 10 * 3, k])
ann_recall = self.compute_recall(flat_idx, flat_gt)
self.assertGreaterEqual(ann_recall, 0.95)
@parameterized.parameters(
itertools.product(
[dtypes.bfloat16, dtypes.float16, dtypes.float32],
[1, 10], # k
[100, 500], # row_size
[1, 10, 128], # num_rows
))
def test_gradients(self, dtype, k, row_size, num_rows):
row = np.arange(row_size, dtype=np.float32)
db = np.stack(list(self._rng.permutation(row) for _ in range(num_rows)))
out_grads = self._rng.random([num_rows, k])
@function(jit_compile=True)
def ann_with_grads(db, out_grads):
with backprop.GradientTape() as tape:
val, idx = nn_ops.approx_max_k(db, k)
result_in_grads = tape.gradient(val, db, out_grads)
lifted_k_idx = array_ops.reshape(idx, [num_rows, k, 1])
iota_idx = array_ops.broadcast_to(
array_ops.reshape(math_ops.range(num_rows), [num_rows, 1, 1]),
[num_rows, k, 1])
lifted_idx = array_ops.concat([iota_idx, lifted_k_idx], axis=2)
k_idx_s = array_ops.reshape(lifted_idx, [num_rows * k, 2])
k_gra_s = array_ops.reshape(out_grads, [num_rows * k])
expected_in_grads = array_ops.scatter_nd(k_idx_s, k_gra_s,
[num_rows, row_size])
return [expected_in_grads, result_in_grads]
with ops.device('/device:TPU:0'):
db_op = variables.Variable(db, dtype=dtype)
out_grads_op = variables.Variable(out_grads, dtype=dtype)
expected_in_grads, result_in_grads = ann_with_grads(db_op, out_grads_op)
self.assertAllClose(expected_in_grads, result_in_grads)
# Tests that multiple ops are supported and the comparison functions are
# renamed properly to avoid conflict while using the MLIR bridge.
def test_multiple_ops(self):
k = 1
row_size = 100
num_rows = 10
row = np.arange(row_size, dtype=np.float32)
db1 = np.stack(list(self._rng.permutation(row) for _ in range(num_rows)))
db2 = np.stack(list(self._rng.permutation(row) for _ in range(num_rows)))
@function(jit_compile=True)
def ann(db1, db2):
result1 = nn_ops.approx_max_k(db1, k, aggregate_to_topk=True)
result2 = nn_ops.approx_max_k(db2, k, aggregate_to_topk=True)
return (result1, result2)
with ops.device('/device:TPU:0'):
db1_op = variables.Variable(db1)
db2_op = variables.Variable(db2)
result1, result2 = ann(db1_op, db2_op)
gt = np.argsort(-db1)[:, :k]
ann_recall = self.compute_recall(result1[1].numpy(), gt)
self.assertGreaterEqual(ann_recall, 0.95)
gt = np.argsort(-db2)[:, :k]
ann_recall = self.compute_recall(result2[1].numpy(), gt)
self.assertGreaterEqual(ann_recall, 0.95)
if __name__ == '__main__':
test.main()