Inferencing models with metadata can be as easy as just a few lines of code. TensorFlow Lite metadata contains a rich description of what the model does and how to use the model. It can empower code generators to automatically generate the inference code for you, such as using the Android Studio ML Binding feature or TensorFlow Lite Android code generator. It can also be used to configure your custom inference pipeline.
TensorFlow Lite provides varieties of tools and libraries to serve different tiers of deployment requirements as follows:
There are two ways to automatically generate the necessary Android wrapper code for TensorFlow Lite model with metadata:
-
Android Studio ML Model Binding is tooling available within Android Studio to import TensorFlow Lite model through a graphical interface. Android Studio will automatically configure settings for the project and generate wrapper classes based on the model metadata.
-
TensorFlow Lite Code Generator is an executable that generates model interface automatically based on the metadata. It currently supports Android with Java. The wrapper code removes the need to interact directly with
ByteBuffer
. Instead, developers can interact with the TensorFlow Lite model with typed objects such asBitmap
andRect
. Android Studio users can also get access to the codegen feature through Android Studio ML Binding.
TensorFlow Lite Task Library provides optimized ready-to-use model interfaces for popular machine learning tasks, such as image classification, question and answer, etc. The model interfaces are specifically designed for each task to achieve the best performance and usability. Task Library works cross-platform and is supported on Java, C++, and Swift.
TensorFlow Lite Support Library is a cross-platform library that helps to customize model interface and build inference pipelines. It contains varieties of util methods and data structures to perform pre/post processing and data conversion. It is also designed to match the behavior of TensorFlow modules, such as TF.Image and TF.Text, ensuring consistency from training to inferencing.
Browse TensorFlow Lite hosted models and TensorFlow Hub to download pretrained models with metadata for both vision and text tasks. Also see different options of visualizing the metadata.
Visit the TensorFlow Lite Support GitHub repo for more examples and source code. Let us know your feedback by creating a new GitHub issue.