-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflatbuffer_utils_test.py
253 lines (217 loc) · 10.8 KB
/
flatbuffer_utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for flatbuffer_utils.py."""
import copy
import os
import subprocess
import sys
from tensorflow.lite.tools import flatbuffer_utils
from tensorflow.lite.tools import test_utils
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test
_SKIPPED_BUFFER_INDEX = 1
class WriteReadModelTest(test_util.TensorFlowTestCase):
def testWriteReadModel(self):
# 1. SETUP
# Define the initial model
initial_model = test_utils.build_mock_model()
# Define temporary files
tmp_dir = self.get_temp_dir()
model_filename = os.path.join(tmp_dir, 'model.tflite')
# 2. INVOKE
# Invoke the write_model and read_model functions
flatbuffer_utils.write_model(initial_model, model_filename)
final_model = flatbuffer_utils.read_model(model_filename)
# 3. VALIDATE
# Validate that the initial and final models are the same
# Validate the description
self.assertEqual(initial_model.description, final_model.description)
# Validate the main subgraph's name, inputs, outputs, operators and tensors
initial_subgraph = initial_model.subgraphs[0]
final_subgraph = final_model.subgraphs[0]
self.assertEqual(initial_subgraph.name, final_subgraph.name)
for i in range(len(initial_subgraph.inputs)):
self.assertEqual(initial_subgraph.inputs[i], final_subgraph.inputs[i])
for i in range(len(initial_subgraph.outputs)):
self.assertEqual(initial_subgraph.outputs[i], final_subgraph.outputs[i])
for i in range(len(initial_subgraph.operators)):
self.assertEqual(initial_subgraph.operators[i].opcodeIndex,
final_subgraph.operators[i].opcodeIndex)
initial_tensors = initial_subgraph.tensors
final_tensors = final_subgraph.tensors
for i in range(len(initial_tensors)):
self.assertEqual(initial_tensors[i].name, final_tensors[i].name)
self.assertEqual(initial_tensors[i].type, final_tensors[i].type)
self.assertEqual(initial_tensors[i].buffer, final_tensors[i].buffer)
for j in range(len(initial_tensors[i].shape)):
self.assertEqual(initial_tensors[i].shape[j], final_tensors[i].shape[j])
# Validate the first valid buffer (index 0 is always None)
initial_buffer = initial_model.buffers[1].data
final_buffer = final_model.buffers[1].data
for i in range(initial_buffer.size):
self.assertEqual(initial_buffer.data[i], final_buffer.data[i])
class StripStringsTest(test_util.TensorFlowTestCase):
def testStripStrings(self):
# 1. SETUP
# Define the initial model
initial_model = test_utils.build_mock_model()
final_model = copy.deepcopy(initial_model)
# 2. INVOKE
# Invoke the strip_strings function
flatbuffer_utils.strip_strings(final_model)
# 3. VALIDATE
# Validate that the initial and final models are the same except strings
# Validate the description
self.assertIsNotNone(initial_model.description)
self.assertIsNone(final_model.description)
self.assertIsNotNone(initial_model.signatureDefs)
self.assertIsNone(final_model.signatureDefs)
# Validate the main subgraph's name, inputs, outputs, operators and tensors
initial_subgraph = initial_model.subgraphs[0]
final_subgraph = final_model.subgraphs[0]
self.assertIsNotNone(initial_model.subgraphs[0].name)
self.assertIsNone(final_model.subgraphs[0].name)
for i in range(len(initial_subgraph.inputs)):
self.assertEqual(initial_subgraph.inputs[i], final_subgraph.inputs[i])
for i in range(len(initial_subgraph.outputs)):
self.assertEqual(initial_subgraph.outputs[i], final_subgraph.outputs[i])
for i in range(len(initial_subgraph.operators)):
self.assertEqual(initial_subgraph.operators[i].opcodeIndex,
final_subgraph.operators[i].opcodeIndex)
initial_tensors = initial_subgraph.tensors
final_tensors = final_subgraph.tensors
for i in range(len(initial_tensors)):
self.assertIsNotNone(initial_tensors[i].name)
self.assertIsNone(final_tensors[i].name)
self.assertEqual(initial_tensors[i].type, final_tensors[i].type)
self.assertEqual(initial_tensors[i].buffer, final_tensors[i].buffer)
for j in range(len(initial_tensors[i].shape)):
self.assertEqual(initial_tensors[i].shape[j], final_tensors[i].shape[j])
# Validate the first valid buffer (index 0 is always None)
initial_buffer = initial_model.buffers[1].data
final_buffer = final_model.buffers[1].data
for i in range(initial_buffer.size):
self.assertEqual(initial_buffer.data[i], final_buffer.data[i])
class RandomizeWeightsTest(test_util.TensorFlowTestCase):
def testRandomizeWeights(self):
# 1. SETUP
# Define the initial model
initial_model = test_utils.build_mock_model()
final_model = copy.deepcopy(initial_model)
# 2. INVOKE
# Invoke the randomize_weights function
flatbuffer_utils.randomize_weights(final_model)
# 3. VALIDATE
# Validate that the initial and final models are the same, except that
# the weights in the model buffer have been modified (i.e, randomized)
# Validate the description
self.assertEqual(initial_model.description, final_model.description)
# Validate the main subgraph's name, inputs, outputs, operators and tensors
initial_subgraph = initial_model.subgraphs[0]
final_subgraph = final_model.subgraphs[0]
self.assertEqual(initial_subgraph.name, final_subgraph.name)
for i in range(len(initial_subgraph.inputs)):
self.assertEqual(initial_subgraph.inputs[i], final_subgraph.inputs[i])
for i in range(len(initial_subgraph.outputs)):
self.assertEqual(initial_subgraph.outputs[i], final_subgraph.outputs[i])
for i in range(len(initial_subgraph.operators)):
self.assertEqual(initial_subgraph.operators[i].opcodeIndex,
final_subgraph.operators[i].opcodeIndex)
initial_tensors = initial_subgraph.tensors
final_tensors = final_subgraph.tensors
for i in range(len(initial_tensors)):
self.assertEqual(initial_tensors[i].name, final_tensors[i].name)
self.assertEqual(initial_tensors[i].type, final_tensors[i].type)
self.assertEqual(initial_tensors[i].buffer, final_tensors[i].buffer)
for j in range(len(initial_tensors[i].shape)):
self.assertEqual(initial_tensors[i].shape[j], final_tensors[i].shape[j])
# Validate the first valid buffer (index 0 is always None)
initial_buffer = initial_model.buffers[1].data
final_buffer = final_model.buffers[1].data
for j in range(initial_buffer.size):
self.assertNotEqual(initial_buffer.data[j], final_buffer.data[j])
def testRandomizeSomeWeights(self):
# 1. SETUP
# Define the initial model
initial_model = test_utils.build_mock_model()
final_model = copy.deepcopy(initial_model)
# 2. INVOKE
# Invoke the randomize_weights function, but skip the first buffer
flatbuffer_utils.randomize_weights(
final_model, buffers_to_skip=[_SKIPPED_BUFFER_INDEX])
# 3. VALIDATE
# Validate that the initial and final models are the same, except that
# the weights in the model buffer have been modified (i.e, randomized)
# Validate the description
self.assertEqual(initial_model.description, final_model.description)
# Validate the main subgraph's name, inputs, outputs, operators and tensors
initial_subgraph = initial_model.subgraphs[0]
final_subgraph = final_model.subgraphs[0]
self.assertEqual(initial_subgraph.name, final_subgraph.name)
for i, _ in enumerate(initial_subgraph.inputs):
self.assertEqual(initial_subgraph.inputs[i], final_subgraph.inputs[i])
for i, _ in enumerate(initial_subgraph.outputs):
self.assertEqual(initial_subgraph.outputs[i], final_subgraph.outputs[i])
for i, _ in enumerate(initial_subgraph.operators):
self.assertEqual(initial_subgraph.operators[i].opcodeIndex,
final_subgraph.operators[i].opcodeIndex)
initial_tensors = initial_subgraph.tensors
final_tensors = final_subgraph.tensors
for i, _ in enumerate(initial_tensors):
self.assertEqual(initial_tensors[i].name, final_tensors[i].name)
self.assertEqual(initial_tensors[i].type, final_tensors[i].type)
self.assertEqual(initial_tensors[i].buffer, final_tensors[i].buffer)
for j in range(len(initial_tensors[i].shape)):
self.assertEqual(initial_tensors[i].shape[j], final_tensors[i].shape[j])
# Validate that the skipped buffer is unchanged.
initial_buffer = initial_model.buffers[_SKIPPED_BUFFER_INDEX].data
final_buffer = final_model.buffers[_SKIPPED_BUFFER_INDEX].data
for j in range(initial_buffer.size):
self.assertEqual(initial_buffer.data[j], final_buffer.data[j])
class XxdOutputToBytesTest(test_util.TensorFlowTestCase):
def testXxdOutputToBytes(self):
# 1. SETUP
# Define the initial model
initial_model = test_utils.build_mock_model()
initial_bytes = flatbuffer_utils.convert_object_to_bytearray(initial_model)
# Define temporary files
tmp_dir = self.get_temp_dir()
model_filename = os.path.join(tmp_dir, 'model.tflite')
# 2. Write model to temporary file (will be used as input for xxd)
flatbuffer_utils.write_model(initial_model, model_filename)
# 3. DUMP WITH xxd
input_cc_file = os.path.join(tmp_dir, 'model.cc')
command = 'xxd -i {} > {}'.format(model_filename, input_cc_file)
subprocess.call(command, shell=True)
# 4. VALIDATE
final_bytes = flatbuffer_utils.xxd_output_to_bytes(input_cc_file)
if sys.byteorder == 'big':
final_bytes = flatbuffer_utils.byte_swap_tflite_buffer(
final_bytes, 'little', 'big'
)
# Validate that the initial and final bytearray are the same
self.assertEqual(initial_bytes, final_bytes)
class CountResourceVariablesTest(test_util.TensorFlowTestCase):
def testCountResourceVariables(self):
# 1. SETUP
# Define the initial model
initial_model = test_utils.build_mock_model()
# 2. Confirm that resource variables for mock model is 1
# The mock model is created with two VAR HANDLE ops, but with the same
# shared name.
self.assertEqual(
flatbuffer_utils.count_resource_variables(initial_model), 1)
if __name__ == '__main__':
test.main()