-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrepeat_test.py
223 lines (198 loc) · 9 KB
/
repeat_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `tf.data.Dataset.repeat()`."""
from absl.testing import parameterized
import numpy as np
from tensorflow.python.data.experimental.ops import random_access
from tensorflow.python.data.kernel_tests import checkpoint_test_base
from tensorflow.python.data.kernel_tests import test_base
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import options as options_lib
from tensorflow.python.framework import combinations
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.platform import test
class RepeatTest(test_base.DatasetTestBase, parameterized.TestCase):
@combinations.generate(
combinations.times(test_base.default_test_combinations(),
combinations.combine(count=[0, 3, 7])))
def testFiniteRepeat(self, count):
"""Test a dataset that repeats its input multiple times."""
components = (np.array(1), np.array([1, 2, 3]), np.array(37.0))
dataset = dataset_ops.Dataset.from_tensors(components).repeat(count)
self.assertEqual(
[c.shape for c in components],
[shape for shape in dataset_ops.get_legacy_output_shapes(dataset)])
self.assertDatasetProduces(dataset, [components] * count)
@combinations.generate(test_base.default_test_combinations())
def testInfiniteRepeat(self):
# NOTE(mrry): There's not a good way to test that the sequence is infinite.
components = (np.array(1), np.array([1, 2, 3]), np.array(37.0))
dataset = dataset_ops.Dataset.from_tensors(components).repeat(-1)
self.assertEqual(
[c.shape for c in components],
[shape for shape in dataset_ops.get_legacy_output_shapes(dataset)])
get_next = self.getNext(dataset)
for _ in range(17):
results = self.evaluate(get_next())
for component, result_component in zip(components, results):
self.assertAllEqual(component, result_component)
@combinations.generate(test_base.default_test_combinations())
def testRepeatRepeat(self):
"""Test the composition of repeat datasets."""
components = (np.array(1), np.array([1, 2, 3]), np.array(37.0))
inner_count, outer_count = 7, 14
dataset = dataset_ops.Dataset.from_tensors(components).repeat(
inner_count).repeat(outer_count)
self.assertEqual(
[c.shape for c in components],
[shape for shape in dataset_ops.get_legacy_output_shapes(dataset)])
self.assertDatasetProduces(dataset,
[components] * (inner_count * outer_count))
@combinations.generate(test_base.default_test_combinations())
def testName(self):
dataset = dataset_ops.Dataset.from_tensors(42).repeat(1, name="repeat")
self.assertDatasetProduces(dataset, [42])
class RepeatDatasetCheckpointTest(checkpoint_test_base.CheckpointTestBase,
parameterized.TestCase):
def _build_repeat_dataset(self,
num_elements,
num_epochs,
num_outputs=None,
options=None):
dataset = dataset_ops.Dataset.range(num_elements).repeat(num_epochs)
if num_outputs:
range_dataset = dataset_ops.Dataset.range(num_outputs)
dataset = dataset_ops.Dataset.zip((dataset, range_dataset))
if options:
dataset = dataset.with_options(options)
return dataset
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
checkpoint_test_base.default_test_combinations(),
combinations.combine(symbolic_checkpoint=[False, True])))
def testFiniteRepeat(self, verify_fn, symbolic_checkpoint):
num_elements = 10
num_epochs = 10
options = options_lib.Options()
options.experimental_symbolic_checkpoint = symbolic_checkpoint
verify_fn(
self,
lambda: self._build_repeat_dataset(
num_elements, num_epochs, options=options),
num_outputs=(num_elements * num_epochs))
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
checkpoint_test_base.default_test_combinations(),
combinations.combine(symbolic_checkpoint=[False, True])))
def testEmptyRepeat(self, verify_fn, symbolic_checkpoint):
num_elements = 10
num_epochs = 0
options = options_lib.Options()
options.experimental_symbolic_checkpoint = symbolic_checkpoint
verify_fn(
self,
lambda: self._build_repeat_dataset(
num_elements, num_epochs, options=options),
num_outputs=0)
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
checkpoint_test_base.default_test_combinations(),
combinations.combine(symbolic_checkpoint=[False, True])))
def testInfiniteRepeat(self, verify_fn, symbolic_checkpoint):
num_elements = 10
num_epochs = -1
num_outputs = 100
options = options_lib.Options()
options.experimental_symbolic_checkpoint = symbolic_checkpoint
verify_fn(
self,
lambda: self._build_repeat_dataset(
num_elements, num_epochs, num_outputs=num_outputs, options=options),
num_outputs=num_outputs)
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
checkpoint_test_base.default_test_combinations(),
combinations.combine(symbolic_checkpoint=[False, True])))
def testInfiniteEmptyRepeat(self, verify_fn, symbolic_checkpoint):
num_elements = 0
num_epochs = -1
options = options_lib.Options()
options.experimental_symbolic_checkpoint = symbolic_checkpoint
verify_fn(
self,
lambda: self._build_repeat_dataset(
num_elements, num_epochs, options=options),
num_outputs=0)
class RepeatRandomAccessTest(test_base.DatasetTestBase, parameterized.TestCase):
@combinations.generate(
combinations.times(test_base.default_test_combinations(),
combinations.combine(index=[-1, 6, 7])))
def testInvalidIndex(self, index):
dataset = dataset_ops.Dataset.from_tensor_slices([1, 2, 3]).repeat(2)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=index))
@combinations.generate(
combinations.times(test_base.default_test_combinations(),
combinations.combine(index=[-1, 0])))
def testEmptyDataset(self, index):
dataset = dataset_ops.Dataset.from_tensor_slices([]).repeat(2)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=index))
@combinations.generate(
combinations.times(test_base.default_test_combinations(),
combinations.combine(elements=[0, 5, 10],
count=[0, 3, 8])))
def testFiniteRepeat(self, elements, count):
dataset = dataset_ops.Dataset.range(elements).repeat(count)
expected_dataset = np.tile(
np.arange(
start=0, stop=elements, step=1, dtype=dtypes.int64.as_numpy_dtype),
count)
for i in range(elements * count):
self.assertEqual(
self.evaluate(random_access.at(dataset, index=i)),
expected_dataset[i])
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
combinations.combine(
elements=[0, 3, 5], count_1=[0, 1, 2], count_2=[3, 4, 5])))
def testRepeatRepeat(self, elements, count_1, count_2):
dataset = dataset_ops.Dataset.range(elements).repeat(count_1).repeat(
count_2)
expected_dataset = np.tile(
np.arange(
start=0, stop=elements, step=1, dtype=dtypes.int64.as_numpy_dtype),
count_1 * count_2)
for i in range(elements * count_1 * count_2):
self.assertEqual(
self.evaluate(random_access.at(dataset, index=i)),
expected_dataset[i])
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
combinations.combine(elements=[3, 5], count=[None, -1, -2])))
def testInfiniteRepeat(self, elements, count):
dataset = dataset_ops.Dataset.range(elements).repeat(count=count)
# Datasets with infinite cardinality do not support random access.
with self.assertRaises(errors.FailedPreconditionError):
self.evaluate(random_access.at(dataset, index=0))
if __name__ == "__main__":
test.main()