-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathunbatch_test.py
266 lines (233 loc) · 11 KB
/
unbatch_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `tf.data.Dataset.unbatch()`."""
from absl.testing import parameterized
import numpy as np
from tensorflow.python.data.kernel_tests import checkpoint_test_base
from tensorflow.python.data.kernel_tests import test_base
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import options as options_lib
from tensorflow.python.framework import combinations
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.platform import test
from tensorflow.python.util import compat
class UnbatchTest(test_base.DatasetTestBase, parameterized.TestCase):
@combinations.generate(test_base.default_test_combinations())
def testUnbatchWithUnknownRankInput(self):
dataset = dataset_ops.Dataset.from_tensors([0, 1, 2, 3]).unbatch()
self.assertDatasetProduces(dataset, range(4))
@combinations.generate(test_base.default_test_combinations())
def testUnbatchScalarDataset(self):
data = tuple([math_ops.range(10) for _ in range(3)])
data = dataset_ops.Dataset.from_tensor_slices(data)
expected_types = (dtypes.int32,) * 3
data = data.batch(2)
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
data = data.unbatch()
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
self.assertDatasetProduces(data, [(i,) * 3 for i in range(10)])
@combinations.generate(test_base.default_test_combinations())
def testUnbatchNestedDataset(self):
data = dataset_ops.Dataset.from_tensors(
[dataset_ops.Dataset.range(10) for _ in range(10)])
data = data.unbatch().flat_map(lambda x: x)
self.assertDatasetProduces(data, list(range(10)) * 10)
@combinations.generate(test_base.default_test_combinations())
def testUnbatchDatasetWithStrings(self):
data = tuple([math_ops.range(10) for _ in range(3)])
data = dataset_ops.Dataset.from_tensor_slices(data)
data = data.map(lambda x, y, z: (x, string_ops.as_string(y), z))
expected_types = (dtypes.int32, dtypes.string, dtypes.int32)
data = data.batch(2)
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
data = data.unbatch()
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
self.assertDatasetProduces(
data, [(i, compat.as_bytes(str(i)), i) for i in range(10)])
@combinations.generate(test_base.default_test_combinations())
def testUnbatchDatasetWithSparseTensor(self):
st = sparse_tensor.SparseTensorValue(
indices=[[i, i] for i in range(10)],
values=list(range(10)),
dense_shape=[10, 10])
data = dataset_ops.Dataset.from_tensors(st)
data = data.unbatch()
data = data.batch(5)
data = data.unbatch()
expected_output = [
sparse_tensor.SparseTensorValue([[i]], [i], [10]) for i in range(10)
]
self.assertDatasetProduces(data, expected_output=expected_output)
@combinations.generate(test_base.default_test_combinations())
def testUnbatchDatasetWithDenseSparseAndRaggedTensor(self):
st = sparse_tensor.SparseTensorValue(
indices=[[i, i] for i in range(10)],
values=list(range(10)),
dense_shape=[10, 10])
rt = ragged_factory_ops.constant_value([[[0]], [[1]], [[2]], [[3]], [[4]],
[[5]], [[6]], [[7]], [[8]], [[9]]])
data = dataset_ops.Dataset.from_tensors((list(range(10)), st, rt))
data = data.unbatch()
data = data.batch(5)
data = data.unbatch()
expected_output = [(i, sparse_tensor.SparseTensorValue([[i]], [i], [10]),
ragged_factory_ops.constant_value([[i]]))
for i in range(10)]
self.assertDatasetProduces(
data, expected_output=expected_output)
@combinations.generate(test_base.default_test_combinations())
def testUnbatchDatasetWithRaggedTensor(self):
rt = ragged_factory_ops.constant_value([[[0]], [[1]], [[2]], [[3]], [[4]],
[[5]], [[6]], [[7]], [[8]], [[9]]])
data = dataset_ops.Dataset.from_tensors(rt)
data = data.unbatch()
data = data.batch(5)
data = data.batch(2)
data = data.unbatch()
expected_output = [
ragged_factory_ops.constant_value([[[0]], [[1]], [[2]], [[3]], [[4]]]),
ragged_factory_ops.constant_value([[[5]], [[6]], [[7]], [[8]], [[9]]]),
]
self.assertDatasetProduces(
data, expected_output=expected_output)
@combinations.generate(test_base.default_test_combinations())
def testUnbatchSingleElementTupleDataset(self):
data = tuple([(math_ops.range(10),) for _ in range(3)])
data = dataset_ops.Dataset.from_tensor_slices(data)
expected_types = ((dtypes.int32,),) * 3
data = data.batch(2)
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
data = data.unbatch()
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
self.assertDatasetProduces(data, [((i,),) * 3 for i in range(10)])
@combinations.generate(test_base.default_test_combinations())
def testUnbatchMultiElementTupleDataset(self):
data = tuple([(math_ops.range(10 * i, 10 * i + 10),
array_ops.fill([10], "hi")) for i in range(3)])
data = dataset_ops.Dataset.from_tensor_slices(data)
expected_types = ((dtypes.int32, dtypes.string),) * 3
data = data.batch(2)
self.assertAllEqual(expected_types,
dataset_ops.get_legacy_output_types(data))
data = data.unbatch()
self.assertAllEqual(expected_types,
dataset_ops.get_legacy_output_types(data))
self.assertDatasetProduces(
data,
[((i, b"hi"), (10 + i, b"hi"), (20 + i, b"hi")) for i in range(10)])
@combinations.generate(test_base.default_test_combinations())
def testUnbatchEmpty(self):
data = dataset_ops.Dataset.from_tensors(
(constant_op.constant([]), constant_op.constant([], shape=[0, 4]),
constant_op.constant([], shape=[0, 4, 0])))
data = data.unbatch()
self.assertDatasetProduces(data, [])
@combinations.generate(test_base.default_test_combinations())
def testUnbatchStaticShapeMismatch(self):
data = dataset_ops.Dataset.from_tensors((np.arange(7), np.arange(8),
np.arange(9)))
with self.assertRaises(ValueError):
data.unbatch()
@combinations.generate(test_base.graph_only_combinations())
def testUnbatchDynamicShapeMismatch(self):
ph1 = array_ops.placeholder(dtypes.int32, shape=[None])
ph2 = array_ops.placeholder(dtypes.int32, shape=None)
data = dataset_ops.Dataset.from_tensors((ph1, ph2))
data = data.unbatch()
iterator = dataset_ops.make_initializable_iterator(data)
next_element = iterator.get_next()
with self.cached_session() as sess:
# Mismatch in the 0th dimension.
sess.run(
iterator.initializer,
feed_dict={
ph1: np.arange(7).astype(np.int32),
ph2: np.arange(8).astype(np.int32)
})
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(next_element)
# No 0th dimension (i.e. scalar value) for one component.
sess.run(
iterator.initializer,
feed_dict={
ph1: np.arange(7).astype(np.int32),
ph2: 7
})
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(next_element)
@combinations.generate(test_base.default_test_combinations())
def testUnbatchDatasetWithUintDtypes(self):
components = (
np.tile(np.array([[0], [1], [2], [3]], dtype=np.uint8), 2),
np.tile(np.array([[1], [2], [3], [256]], dtype=np.uint16), 2),
np.tile(np.array([[2], [3], [4], [65536]], dtype=np.uint32), 2),
np.tile(np.array([[3], [4], [5], [4294967296]], dtype=np.uint64), 2),
)
expected_types = (dtypes.uint8, dtypes.uint16, dtypes.uint32, dtypes.uint64)
expected_output = [tuple([c[i] for c in components]) for i in range(4)]
data = dataset_ops.Dataset.from_tensor_slices(components)
data = data.batch(2)
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
data = data.unbatch()
self.assertEqual(expected_types, dataset_ops.get_legacy_output_types(data))
self.assertDatasetProduces(data, expected_output)
@combinations.generate(test_base.default_test_combinations())
def testNoneComponent(self):
dataset = dataset_ops.Dataset.from_tensors(
(list(range(10)), None)).unbatch().map(lambda x, y: x)
self.assertDatasetProduces(dataset, expected_output=range(10))
@combinations.generate(test_base.default_test_combinations())
def testName(self):
dataset = dataset_ops.Dataset.from_tensors([42]).unbatch(name="unbatch")
self.assertDatasetProduces(dataset, [42])
class UnbatchCheckpointTest(checkpoint_test_base.CheckpointTestBase,
parameterized.TestCase):
def build_dataset(self,
multiplier=15.0,
tensor_slice_len=2,
batch_size=2,
options=None):
components = (np.arange(tensor_slice_len), np.array([[1, 2, 3]]) *
np.arange(tensor_slice_len)[:, np.newaxis],
np.array(multiplier) * np.arange(tensor_slice_len))
dataset = dataset_ops.Dataset.from_tensor_slices(components).batch(
batch_size).unbatch()
if options:
dataset = dataset.with_options(options)
return dataset
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
checkpoint_test_base.default_test_combinations(),
combinations.combine(symbolic_checkpoint=[False, True])))
def test(self, verify_fn, symbolic_checkpoint):
tensor_slice_len = 8
batch_size = 2
num_outputs = tensor_slice_len
options = options_lib.Options()
options.experimental_symbolic_checkpoint = symbolic_checkpoint
verify_fn(
self,
lambda: self.build_dataset(15.0, tensor_slice_len, batch_size, options),
num_outputs)
if __name__ == "__main__":
test.main()