-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathzip_test.py
355 lines (314 loc) · 13.2 KB
/
zip_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `tf.data.Dataset.zip()`."""
import collections
from absl.testing import parameterized
import numpy as np
from tensorflow.python.data.experimental.ops import random_access
from tensorflow.python.data.kernel_tests import checkpoint_test_base
from tensorflow.python.data.kernel_tests import test_base
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import options as options_lib
from tensorflow.python.framework import combinations
from tensorflow.python.framework import errors
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import test
try:
import attr # pylint:disable=g-import-not-at-top
except ImportError:
attr = None
def _dataset_factory(components):
datasets = tuple([
dataset_ops.Dataset.from_tensor_slices(component)
for component in components
])
return dataset_ops.Dataset.zip(datasets)
class ZipTest(test_base.DatasetTestBase, parameterized.TestCase):
@combinations.generate(test_base.default_test_combinations())
def testZipEqual(self):
components = [
np.tile(np.array([[1], [2], [3], [4]]), 20),
np.tile(np.array([[12], [13], [14], [15]]), 22),
np.array([37.0, 38.0, 39.0, 40.0])
]
get_next = self.getNext(_dataset_factory(components))
for i in range(4):
results = self.evaluate(get_next())
for component, result_component in zip(components, results):
self.assertAllEqual(component[i], result_component)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(get_next())
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(get_next())
@combinations.generate(test_base.default_test_combinations())
def testZipUnequal(self):
components = [[1, 2, 3, 4], [1, 2, 3, 4, 5], [1.0, 2.0]]
get_next = self.getNext(_dataset_factory(components))
for i in range(2):
results = self.evaluate(get_next())
for component, result_component in zip(components, results):
self.assertAllEqual(component[i], result_component)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(get_next())
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(get_next())
@combinations.generate(test_base.default_test_combinations())
def testNested(self):
components = [
np.tile(np.array([[1], [2], [3], [4]]), 20),
np.tile(np.array([[12], [13], [14], [15]]), 22),
np.array([37.0, 38.0, 39.0, 40.0])
]
datasets = [
dataset_ops.Dataset.from_tensor_slices(component)
for component in components
]
dataset = dataset_ops.Dataset.zip((datasets[0], (datasets[1], datasets[2])))
self.assertEqual(
dataset_ops.get_legacy_output_shapes(dataset),
(tensor_shape.TensorShape([20]),
(tensor_shape.TensorShape([22]), tensor_shape.TensorShape([]))))
get_next = self.getNext(dataset)
for i in range(4):
result1, (result2, result3) = self.evaluate(get_next())
self.assertAllEqual(components[0][i], result1)
self.assertAllEqual(components[1][i], result2)
self.assertAllEqual(components[2][i], result3)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(get_next())
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(get_next())
@combinations.generate(test_base.default_test_combinations())
def testNamedTuple(self):
Foo = collections.namedtuple("Foo", ["x", "y"])
x = Foo(x=dataset_ops.Dataset.range(3), y=dataset_ops.Dataset.range(3, 6))
dataset = dataset_ops.Dataset.zip(x)
expected = [Foo(x=0, y=3), Foo(x=1, y=4), Foo(x=2, y=5)]
self.assertDatasetProduces(dataset, expected)
@combinations.generate(test_base.default_test_combinations())
def testAttrs(self):
if attr is None:
self.skipTest("attr module is not available.")
@attr.s
class Foo:
x = attr.ib()
y = attr.ib()
x = Foo(x=dataset_ops.Dataset.range(3), y=dataset_ops.Dataset.range(3, 6))
dataset = dataset_ops.Dataset.zip(x)
expected = [Foo(x=0, y=3), Foo(x=1, y=4), Foo(x=2, y=5)]
self.assertDatasetProduces(dataset, expected)
@combinations.generate(test_base.default_test_combinations())
def testName(self):
x = dataset_ops.Dataset.from_tensors(4)
y = dataset_ops.Dataset.from_tensors(2)
dataset = dataset_ops.Dataset.zip((x, y), name="zip")
self.assertDatasetProduces(dataset, [(4, 2)])
@combinations.generate(
combinations.times(test_base.default_test_combinations())
)
def testZipWithArgsAndDataset(self):
with self.assertRaisesRegex(
TypeError, r"Both `\*args` and `datasets` cannot be set."
):
dataset_ops.Dataset.zip(
dataset_ops.Dataset.range(1, 4),
dataset_ops.Dataset.range(4, 7),
datasets=(
dataset_ops.Dataset.range(1, 4),
dataset_ops.Dataset.range(4, 7),
),
)
@combinations.generate(
combinations.times(test_base.default_test_combinations())
)
def testZipBasicWithNoInput(self):
with self.assertRaisesRegex(
TypeError, r"Must pass at least one dataset to `zip`."
):
dataset_ops.Dataset.zip()
@combinations.generate(
combinations.times(test_base.default_test_combinations())
)
def InvalidZipInputList(self):
with self.assertRaisesRegex(
TypeError,
r"Invalid input to `zip`. Inputs are expected to be (nested)"
r" structures of `tf.data.Dataset` objects. Python `list` is"
r" not supported and you should use `tuple` instead.",
):
dataset_ops.Dataset.zip([1, 2, 3], [4, 5, 6])
class ZipCheckpointTest(
checkpoint_test_base.CheckpointTestBase, parameterized.TestCase
):
def _build_dataset(self, arr, options=None):
components = [
np.tile(np.array([[1], [2], [3], [4]]), 20),
np.tile(np.array([[12], [13], [14], [15]]), 22),
np.array(arr)
]
datasets = [
dataset_ops.Dataset.from_tensor_slices(component)
for component in components
]
dataset = dataset_ops.Dataset.zip((datasets[0], (datasets[1], datasets[2])))
if options:
dataset = dataset.with_options(options)
return dataset
@combinations.generate(
combinations.times(
test_base.default_test_combinations(),
checkpoint_test_base.default_test_combinations(),
combinations.combine(elements=[[37.0, 38.0, 39.0, 40.0], [1.0, 2.0]]),
combinations.combine(symbolic_checkpoint=[False, True])))
def test(self, verify_fn, elements, symbolic_checkpoint):
options = options_lib.Options()
options.experimental_symbolic_checkpoint = symbolic_checkpoint
verify_fn(self, lambda: self._build_dataset(elements, options),
len(elements))
class ZipRandomAccessTest(test_base.DatasetTestBase, parameterized.TestCase):
@combinations.generate(
combinations.times(test_base.default_test_combinations(),
combinations.combine(index=[-1, 3, 4])))
def testInvalidIndex(self, index):
dataset = dataset_ops.Dataset.zip(
(dataset_ops.Dataset.range(1, 4), dataset_ops.Dataset.range(4, 7)))
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=index))
@combinations.generate(
combinations.times(test_base.default_test_combinations(),
combinations.combine(index=[-1, 0])))
def testEmptyDataset(self, index):
dataset = dataset_ops.Dataset.zip(
datasets=(dataset_ops.Dataset.from_tensor_slices([]),
dataset_ops.Dataset.from_tensor_slices([])))
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=index))
@combinations.generate(
combinations.times(test_base.default_test_combinations()))
def testZipBasic(self):
dataset = dataset_ops.Dataset.zip(
(dataset_ops.Dataset.range(1, 4), dataset_ops.Dataset.range(4, 7)))
expected_dataset = [(1, 4), (2, 5), (3, 6)]
for i in range(3):
self.assertEqual(
self.evaluate(random_access.at(dataset, index=i)),
expected_dataset[i])
@combinations.generate(
combinations.times(test_base.default_test_combinations()))
def testZipBasicWithoutTuple(self):
dataset = dataset_ops.Dataset.zip(
dataset_ops.Dataset.range(1, 4), dataset_ops.Dataset.range(4, 7)
)
expected_dataset = [(1, 4), (2, 5), (3, 6)]
for i in range(3):
self.assertEqual(
self.evaluate(random_access.at(dataset, index=i)), expected_dataset[i]
)
@combinations.generate(
combinations.times(test_base.default_test_combinations())
)
def testZipEqual(self):
components = [
np.tile(np.array([[1], [2], [3], [4]]), 20),
np.tile(np.array([[12], [13], [14], [15]]), 22),
np.array([37.0, 38.0, 39.0, 40.0])
]
dataset = _dataset_factory(components)
for i in range(4):
results = self.evaluate(random_access.at(dataset, index=i))
for component, result_component in zip(components, results):
self.assertAllEqual(component[i], result_component)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=4))
@combinations.generate(test_base.default_test_combinations())
def testZipUnequal(self):
components = [[1, 2, 3, 4], [1, 2, 3, 4, 5], [1.0, 2.0]]
dataset = _dataset_factory(components)
for i in range(2):
results = self.evaluate(random_access.at(dataset, index=i))
for component, result_component in zip(components, results):
self.assertAllEqual(component[i], result_component)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=2))
@combinations.generate(test_base.default_test_combinations())
def testNested(self):
components = [
np.tile(np.array([[1], [2], [3], [4]]), 20),
np.tile(np.array([[12], [13], [14], [15]]), 22),
np.array([37.0, 38.0, 39.0, 40.0])
]
datasets = [
dataset_ops.Dataset.from_tensor_slices(component)
for component in components
]
dataset = dataset_ops.Dataset.zip((datasets[0], (datasets[1], datasets[2])))
for i in range(4):
result1, (result2,
result3) = self.evaluate(random_access.at(dataset, index=i))
self.assertAllEqual(components[0][i], result1)
self.assertAllEqual(components[1][i], result2)
self.assertAllEqual(components[2][i], result3)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=4))
@combinations.generate(test_base.default_test_combinations())
def testNestedWithoutTuple(self):
components = [
np.tile(np.array([[1], [2], [3], [4]]), 20),
np.tile(np.array([[12], [13], [14], [15]]), 22),
np.array([37.0, 38.0, 39.0, 40.0]),
]
datasets = [
dataset_ops.Dataset.from_tensor_slices(component)
for component in components
]
dataset = dataset_ops.Dataset.zip(datasets[0], (datasets[1], datasets[2]))
for i in range(4):
result1, (result2, result3) = self.evaluate(
random_access.at(dataset, index=i)
)
self.assertAllEqual(components[0][i], result1)
self.assertAllEqual(components[1][i], result2)
self.assertAllEqual(components[2][i], result3)
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=4))
@combinations.generate(test_base.default_test_combinations())
def testNamedTuple(self):
Foo = collections.namedtuple("Foo", ["x", "y"])
x = Foo(x=dataset_ops.Dataset.range(3), y=dataset_ops.Dataset.range(3, 6))
dataset = dataset_ops.Dataset.zip(x)
expected = [Foo(x=0, y=3), Foo(x=1, y=4), Foo(x=2, y=5)]
for i in range(3):
self.assertAllEqual(
self.evaluate(random_access.at(dataset, index=i)), expected[i])
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=4))
@combinations.generate(test_base.default_test_combinations())
def testAttrs(self):
if attr is None:
self.skipTest("attr module is not available.")
@attr.s
class Foo:
x = attr.ib()
y = attr.ib()
x = Foo(x=dataset_ops.Dataset.range(3), y=dataset_ops.Dataset.range(3, 6))
dataset = dataset_ops.Dataset.zip(x)
expected = [Foo(x=0, y=3), Foo(x=1, y=4), Foo(x=2, y=5)]
for i in range(3):
self.assertAllEqual(
self.evaluate(random_access.at(dataset, index=i)), expected[i])
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(random_access.at(dataset, index=4))
if __name__ == "__main__":
test.main()