-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinput_ops_test.py
326 lines (270 loc) · 11.8 KB
/
input_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for input pipeline modifications for distribution strategies."""
import os
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import readers
from tensorflow.python.data.util import structure
from tensorflow.python.distribute import input_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import errors
from tensorflow.python.framework import test_util
from tensorflow.python.lib.io import python_io
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
from tensorflow.python.util import compat
class AutoShardDatasetTest(test.TestCase):
def setUp(self):
super(AutoShardDatasetTest, self).setUp()
self._num_files = 10
self._num_records = 4
self._num_shards = 2
self._shard_index = 0
self._record_bytes = 10
def _getNext(self, dataset):
if context.executing_eagerly():
iterator = iter(dataset)
return iterator._next_internal # pylint: disable=protected-access
else:
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
return lambda: get_next
def _record(self, r, f):
return compat.as_bytes("Record %d of file %d" % (r, f))
def _text_line(self, r, f):
return compat.as_bytes("Text line %d of file %d" % (r, f))
def _fixed_length_record(self, r, f):
return compat.as_bytes(str((r * f) % 10) * self._record_bytes)
def _createTFRecordFiles(self):
filenames = []
for i in range(self._num_files):
fn = os.path.join(self.get_temp_dir(), "tf_record.%d.txt" % i)
filenames.append(fn)
writer = python_io.TFRecordWriter(fn)
for j in range(self._num_records):
record = self._record(j, i)
writer.write(record)
writer.close()
return filenames
def _createTextFiles(self):
filenames = []
for i in range(self._num_files):
fn = os.path.join(self.get_temp_dir(), "text_line.%d.txt" % i)
filenames.append(fn)
contents = []
for j in range(self._num_records):
contents.append(self._text_line(j, i))
if j + 1 != self._num_records or i == 0:
contents.append(b"\r\n")
contents = b"".join(contents)
with open(fn, "wb") as f:
f.write(contents)
return filenames
def _createFixedLengthRecordFiles(self):
filenames = []
for i in range(self._num_files):
fn = os.path.join(self.get_temp_dir(), "fixed_length_record.%d.txt" % i)
filenames.append(fn)
with open(fn, "wb") as f:
for j in range(self._num_records):
f.write(self._fixed_length_record(j, i))
return filenames
def _verifySimpleShardingOutput(self, dataset, record_fn):
next_element_fn = self._getNext(dataset)
with self.cached_session():
for f in range(self._shard_index, self._num_files, self._num_shards):
for r in range(self._num_records):
self.assertAllEqual(record_fn(r, f), self.evaluate(next_element_fn()))
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element_fn())
@test_util.run_in_graph_and_eager_modes
def testTFRecordDataset(self):
dataset = readers.TFRecordDataset(self._createTFRecordFiles())
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
self._verifySimpleShardingOutput(dataset, self._record)
@test_util.run_in_graph_and_eager_modes
def testFlatMap(self):
dataset = dataset_ops.Dataset.from_tensor_slices(
self._createTFRecordFiles())
dataset = dataset.flat_map(readers.TFRecordDataset)
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
self._verifySimpleShardingOutput(dataset, self._record)
@test_util.run_in_graph_and_eager_modes
def testInterleave(self):
dataset = dataset_ops.Dataset.from_tensor_slices(
self._createTFRecordFiles())
dataset = dataset.interleave(
readers.TFRecordDataset, cycle_length=4, block_length=self._num_records)
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
# Since block_length == num records in each file, the output will still
# contain records in order of files.
self._verifySimpleShardingOutput(dataset, self._record)
@test_util.run_in_graph_and_eager_modes
def testListfiles(self):
filenames = self._createTFRecordFiles()
file_pattern = filenames[0].rsplit(os.sep, 1)[0] + "/tf_record.*.txt"
dataset = dataset_ops.Dataset.list_files(file_pattern, shuffle=False)
dataset = dataset.flat_map(readers.TFRecordDataset)
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
next_element_fn = self._getNext(dataset)
actual, expected = [], []
for f in range(self._shard_index, self._num_files, self._num_shards):
for r in range(self._num_records):
actual.append(self.evaluate(next_element_fn()))
expected.append(self._record(r, f))
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element_fn())
self.assertAllEqual(expected, actual)
@test_util.run_in_graph_and_eager_modes
def testComplexPipeline(self):
# Setup a complex input pipeline.
batch_size = 2
num_epochs = 5
dataset = dataset_ops.Dataset.from_tensor_slices(
self._createTFRecordFiles())
dataset = dataset.shuffle(buffer_size=self._num_files)
dataset = dataset.flat_map(readers.TFRecordDataset)
dataset = dataset.prefetch(buffer_size=batch_size)
dataset = dataset.shuffle(2 * self._num_files * self._num_records)
dataset = dataset.repeat(num_epochs)
dataset = dataset.map(lambda x: x)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(buffer_size=None)
# Auto shard.
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
# Verify output.
next_element_fn = self._getNext(dataset)
actual = []
num_iterations = (self._num_files * self._num_records * num_epochs) // (
self._num_shards * batch_size)
for _ in range(num_iterations):
actual.extend(self.evaluate(next_element_fn()))
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element_fn())
expected = []
for f in range(0, self._num_files, self._num_shards):
for r in range(self._num_records):
expected.append(self._record(r, f))
expected *= num_epochs
self.assertAllEqual(sorted(expected), sorted(actual))
@test_util.run_in_graph_and_eager_modes
def testZip(self):
dataset1 = readers.TFRecordDataset(self._createTFRecordFiles())
dataset2 = readers.TextLineDataset(self._createTextFiles())
dataset = dataset_ops.Dataset.zip((dataset1, dataset2))
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
record_fn = lambda r, f: (self._record(r, f), self._text_line(r, f))
self._verifySimpleShardingOutput(dataset, record_fn)
@test_util.run_in_graph_and_eager_modes
def testConcat(self):
dataset1 = readers.TFRecordDataset(self._createTFRecordFiles())
dataset2 = readers.TextLineDataset(self._createTextFiles())
dataset = dataset1.concatenate(dataset2)
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
next_element_fn = self._getNext(dataset)
for f in range(self._shard_index, self._num_files, self._num_shards):
for r in range(self._num_records):
self.assertAllEqual(
self._record(r, f), self.evaluate(next_element_fn()))
for f in range(self._shard_index, self._num_files, self._num_shards):
for r in range(self._num_records):
self.assertAllEqual(
self._text_line(r, f), self.evaluate(next_element_fn()))
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element_fn())
@test_util.run_in_graph_and_eager_modes
def testTextLineReader(self):
dataset = readers.TextLineDataset(self._createTextFiles())
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
self._verifySimpleShardingOutput(dataset, self._text_line)
@test_util.run_in_graph_and_eager_modes
def testTextLineReaderWithFlatMap(self):
dataset = readers.TextLineDataset(self._createTextFiles())
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
self._verifySimpleShardingOutput(dataset, self._text_line)
@test_util.run_in_graph_and_eager_modes
def testFixedLengthReaderWithFlatMap(self):
dataset = readers.FixedLengthRecordDataset(
self._createFixedLengthRecordFiles(), self._record_bytes)
dataset = input_ops.auto_shard_dataset(
dataset, self._num_shards, self._shard_index)
self._verifySimpleShardingOutput(dataset, self._fixed_length_record)
# A dataset that creates two variant tensors.
class _TestDataset(dataset_ops.UnaryUnchangedStructureDataset):
def __init__(self, input_dataset):
self._input_dataset = input_dataset
temp_variant_tensor = gen_dataset_ops.prefetch_dataset(
input_dataset._variant_tensor,
buffer_size=1,
**self._flat_structure)
variant_tensor = gen_dataset_ops.model_dataset(
temp_variant_tensor, **self._flat_structure)
super(_TestDataset, self).__init__(input_dataset, variant_tensor)
class CloneDatasetTest(test.TestCase):
def _assert_datasets_equal(self, ds1, ds2):
# First lets assert the structure is the same.
self.assertTrue(
structure.are_compatible(ds1.element_spec, ds2.element_spec))
# Now create iterators on both and assert they produce the same values.
it1 = dataset_ops.make_initializable_iterator(ds1)
it2 = dataset_ops.make_initializable_iterator(ds2)
get_next1 = it1.get_next()
get_next2 = it2.get_next()
with self.cached_session():
self.evaluate([it1.initializer, it2.initializer])
val1, val2 = self.evaluate([get_next1, get_next2])
self.assertEqual(val1, val2)
@test_util.run_deprecated_v1
def testOnlySource(self):
ds = dataset_ops.Dataset.range(10)
cloned_ds = input_ops._clone_dataset(ds)
self._assert_datasets_equal(ds, cloned_ds)
@test_util.run_deprecated_v1
def testSimplePipeline(self):
ds = dataset_ops.Dataset.range(10).map(math_ops.square)
cloned_ds = input_ops._clone_dataset(ds)
self._assert_datasets_equal(ds, cloned_ds)
@test_util.run_deprecated_v1
def testConcat(self):
ds1 = dataset_ops.Dataset.range(10)
ds2 = dataset_ops.Dataset.range(10)
ds = ds1.concatenate(ds2)
cloned_ds = input_ops._clone_dataset(ds)
self._assert_datasets_equal(ds, cloned_ds)
@test_util.run_deprecated_v1
def testZip(self):
ds1 = dataset_ops.Dataset.range(10)
ds2 = dataset_ops.Dataset.range(10)
ds = dataset_ops.Dataset.zip((ds1, ds2))
cloned_ds = input_ops._clone_dataset(ds)
self._assert_datasets_equal(ds, cloned_ds)
@test_util.run_deprecated_v1
def testMultipleVariantTensors(self):
ds = dataset_ops.Dataset.range(10)
ds = _TestDataset(ds)
cloned_ds = input_ops._clone_dataset(ds)
self._assert_datasets_equal(ds, cloned_ds)
if __name__ == "__main__":
test.main()