-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathc_api_util.py
237 lines (180 loc) · 7.23 KB
/
c_api_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for using the TensorFlow C API."""
import contextlib
from tensorflow.core.framework import api_def_pb2
from tensorflow.core.framework import op_def_pb2
from tensorflow.python.client import pywrap_tf_session as c_api
from tensorflow.python.util import compat
from tensorflow.python.util import tf_contextlib
class AlreadyGarbageCollectedError(Exception):
def __init__(self, name, obj_type):
super(AlreadyGarbageCollectedError,
self).__init__(f"{name} of type {obj_type} has already been garbage "
f"collected and cannot be called.")
# FIXME(b/235488206): Convert all Scoped objects to the context manager
# to protect against deletion during use when the object is attached to
# an attribute.
class UniquePtr(object):
"""Wrapper around single-ownership C-API objects that handles deletion."""
__slots__ = ["_obj", "deleter", "name", "type_name"]
def __init__(self, name, obj, deleter):
# '_' prefix marks _obj private, but unclear if it is required also to
# maintain a special CPython destruction order.
self._obj = obj
self.name = name
# Note: when we're destructing the global context (i.e when the process is
# terminating) we may have already deleted other modules. By capturing the
# DeleteGraph function here, we retain the ability to cleanly destroy the
# graph at shutdown, which satisfies leak checkers.
self.deleter = deleter
self.type_name = str(type(obj))
@contextlib.contextmanager
def get(self):
"""Yields the managed C-API Object, guaranteeing aliveness.
This is a context manager. Inside the context the C-API object is
guaranteed to be alive.
Raises:
AlreadyGarbageCollectedError: if the object is already deleted.
"""
# Thread-safety: self.__del__ never runs during the call of this function
# because there is a reference to self from the argument list.
if self._obj is None:
raise AlreadyGarbageCollectedError(self.name, self.type_name)
yield self._obj
def __del__(self):
obj = self._obj
if obj is not None:
self._obj = None
self.deleter(obj)
class ScopedTFStatus(object):
"""Wrapper around TF_Status that handles deletion."""
__slots__ = ["status"]
def __init__(self):
self.status = c_api.TF_NewStatus()
def __del__(self):
# Note: when we're destructing the global context (i.e when the process is
# terminating) we can have already deleted other modules.
if c_api is not None and c_api.TF_DeleteStatus is not None:
c_api.TF_DeleteStatus(self.status)
class ScopedTFImportGraphDefOptions(object):
"""Wrapper around TF_ImportGraphDefOptions that handles deletion."""
__slots__ = ["options"]
def __init__(self):
self.options = c_api.TF_NewImportGraphDefOptions()
def __del__(self):
# Note: when we're destructing the global context (i.e when the process is
# terminating) we can have already deleted other modules.
if c_api is not None and c_api.TF_DeleteImportGraphDefOptions is not None:
c_api.TF_DeleteImportGraphDefOptions(self.options)
class ScopedTFImportGraphDefResults(object):
"""Wrapper around TF_ImportGraphDefOptions that handles deletion."""
__slots__ = ["results"]
def __init__(self, results):
self.results = results
def __del__(self):
# Note: when we're destructing the global context (i.e when the process is
# terminating) we can have already deleted other modules.
if c_api is not None and c_api.TF_DeleteImportGraphDefResults is not None:
c_api.TF_DeleteImportGraphDefResults(self.results)
class ScopedTFFunction(UniquePtr):
"""Wrapper around TF_Function that handles deletion."""
def __init__(self, func, name):
super(ScopedTFFunction, self).__init__(
name=name, obj=func, deleter=c_api.TF_DeleteFunction)
class ScopedTFBuffer(object):
"""An internal class to help manage the TF_Buffer lifetime."""
__slots__ = ["buffer"]
def __init__(self, buf_string):
self.buffer = c_api.TF_NewBufferFromString(compat.as_bytes(buf_string))
def __del__(self):
c_api.TF_DeleteBuffer(self.buffer)
class ApiDefMap(object):
"""Wrapper around Tf_ApiDefMap that handles querying and deletion.
The OpDef protos are also stored in this class so that they could
be queried by op name.
"""
__slots__ = ["_api_def_map", "_op_per_name"]
def __init__(self):
op_def_proto = op_def_pb2.OpList()
buf = c_api.TF_GetAllOpList()
try:
op_def_proto.ParseFromString(c_api.TF_GetBuffer(buf))
self._api_def_map = c_api.TF_NewApiDefMap(buf)
finally:
c_api.TF_DeleteBuffer(buf)
self._op_per_name = {}
for op in op_def_proto.op:
self._op_per_name[op.name] = op
def __del__(self):
# Note: when we're destructing the global context (i.e when the process is
# terminating) we can have already deleted other modules.
if c_api is not None and c_api.TF_DeleteApiDefMap is not None:
c_api.TF_DeleteApiDefMap(self._api_def_map)
def put_api_def(self, text):
c_api.TF_ApiDefMapPut(self._api_def_map, text, len(text))
def get_api_def(self, op_name):
api_def_proto = api_def_pb2.ApiDef()
buf = c_api.TF_ApiDefMapGet(self._api_def_map, op_name, len(op_name))
try:
api_def_proto.ParseFromString(c_api.TF_GetBuffer(buf))
finally:
c_api.TF_DeleteBuffer(buf)
return api_def_proto
def get_op_def(self, op_name):
if op_name in self._op_per_name:
return self._op_per_name[op_name]
raise ValueError(f"No op_def found for op name {op_name}.")
def op_names(self):
return self._op_per_name.keys()
@tf_contextlib.contextmanager
def tf_buffer(data=None):
"""Context manager that creates and deletes TF_Buffer.
Example usage:
with tf_buffer() as buf:
# get serialized graph def into buf
...
proto_data = c_api.TF_GetBuffer(buf)
graph_def.ParseFromString(compat.as_bytes(proto_data))
# buf has been deleted
with tf_buffer(some_string) as buf:
c_api.TF_SomeFunction(buf)
# buf has been deleted
Args:
data: An optional `bytes`, `str`, or `unicode` object. If not None, the
yielded buffer will contain this data.
Yields:
Created TF_Buffer
"""
if data:
buf = c_api.TF_NewBufferFromString(compat.as_bytes(data))
else:
buf = c_api.TF_NewBuffer()
try:
yield buf
finally:
c_api.TF_DeleteBuffer(buf)
def tf_output(c_op, index):
"""Returns a wrapped TF_Output with specified operation and index.
Args:
c_op: wrapped TF_Operation
index: integer
Returns:
Wrapped TF_Output
"""
ret = c_api.TF_Output()
ret.oper = c_op
ret.index = index
return ret