-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpython_api_info.cc
508 lines (459 loc) · 18.4 KB
/
python_api_info.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/python/framework/python_api_info.h"
#include <Python.h>
#include "absl/strings/str_cat.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/python/eager/pywrap_tensor.h"
#include "tensorflow/python/eager/pywrap_tfe.h"
#include "tensorflow/python/framework/op_def_util.h"
#include "tensorflow/python/lib/core/safe_pyobject_ptr.h"
#include "tensorflow/python/util/util.h"
namespace tensorflow {
#if PY_MAJOR_VERSION < 3
// Python 2.x:
#define PY_STRING_CHECK(x) (PyString_Check(x) || PyUnicode_Check(x))
#define PY_INT_AS_LONG(x) (PyInt_AsLong(x))
#define PY_STRING_FROMSTRING(x) (PyString_FromString(x))
#define PY_STRING_INTERN_FROM_STRING(x) (PyString_InternFromString(x))
#define PY_STRING_AS_CSTR(x) (PyString_AsString(x))
#else
// Python 3.x:
#define PY_STRING_CHECK(x) (PyBytes_Check(x) || PyUnicode_Check(x))
#define PY_INT_AS_LONG(x) (PyLong_AsLong(x))
#define PY_STRING_FROMSTRING(x) (PyUnicode_FromString(x))
#define PY_STRING_INTERN_FROM_STRING(x) (PyUnicode_InternFromString(x))
#define PY_STRING_AS_CSTR(x) (PyUnicode_AsUTF8AndSize((x), nullptr))
#endif
namespace {
// Converts the given object to an interned Python string, and returns its
// data pointer. (This means we don't need to worry about ownership for
// this string.)
const char* InternPyString(const std::string& s) {
Safe_PyObjectPtr interned(PY_STRING_INTERN_FROM_STRING(s.c_str()));
return PY_STRING_AS_CSTR(interned.get());
}
template <typename T, typename UnaryPredicate>
void RemoveIf(UnaryPredicate p, std::vector<T>* vec) {
vec->erase(std::remove_if(vec->begin(), vec->end(), p), vec->end());
}
struct DataTypeFormatter {
void operator()(std::string* out, DataType dtype) const {
out->append(DataType_Name(dtype));
}
};
// Populates `param_names` and `defaults_tuple` based on the given OpDef.
void GetOpDefNamesAndDefaults(const tensorflow::OpDef& op_def,
std::vector<string>& param_names,
Safe_PyObjectPtr& defaults_tuple) {
param_names.reserve(op_def.input_arg_size() + op_def.attr_size());
std::set<std::string> inferred_attrs;
// Input parameters come first, in the order they occur in the OpDef.
for (const auto& input : op_def.input_arg()) {
param_names.push_back(input.name());
if (!input.type_attr().empty()) {
inferred_attrs.insert(input.type_attr());
}
if (!input.type_list_attr().empty()) {
inferred_attrs.insert(input.type_list_attr());
}
if (!input.number_attr().empty()) {
inferred_attrs.insert(input.number_attr());
}
}
// Next come attribute params without defaults, followed by attributes with
// defaults (but inferred attributes are not included).
std::vector<std::string> param_names_with_default;
std::vector<Safe_PyObjectPtr> defaults;
for (const auto& attr : op_def.attr()) {
if (inferred_attrs.count(attr.name()) == 0) {
if (attr.has_default_value()) {
param_names_with_default.push_back(attr.name());
defaults.push_back(AttrValueToPyObject(attr.default_value()));
} else {
param_names.push_back(attr.name());
}
}
}
param_names.insert(param_names.end(), param_names_with_default.begin(),
param_names_with_default.end());
// Finally, the 'name' parameter comes at the end, and its default value
// is the operation's name.
param_names.push_back("name");
defaults.emplace_back(PY_STRING_FROMSTRING(op_def.name().c_str()));
defaults_tuple.reset(PyTuple_New(defaults.size()));
for (int i = 0; i < defaults.size(); ++i) {
PyTuple_SET_ITEM(defaults_tuple.get(), i, defaults[i].release());
}
}
} // namespace
PythonAPIInfo::PythonAPIInfo(const std::string& api_name)
: api_name_(InternPyString(api_name)) {}
Status PythonAPIInfo::Initialize(const OpDef& op_def,
const std::vector<string> param_names,
PyObject* defaults_tuple) {
// Intern the parameter names.
param_names_.reserve(param_names.size());
for (const auto& param_name : param_names) {
param_names_.push_back(InternPyString(param_name));
}
Py_INCREF(defaults_tuple);
defaults_tuple_.reset(defaults_tuple);
// Build an index to look up parameter index by name. (Does not include
// inferred attributes.)
std::map<std::string, int> param_name_to_index;
for (int i = 0; i < param_names_.size(); ++i) {
param_name_to_index[param_names_[i]] = i;
}
// Initialize each attribute & input parameter.
attributes_.reserve(op_def.attr_size());
for (const auto& attr_def : op_def.attr()) {
TF_RETURN_IF_ERROR(InitializeAttribute(attr_def, param_name_to_index));
}
inputs_.reserve(op_def.input_arg_size());
for (const auto& arg_def : op_def.input_arg()) {
TF_RETURN_IF_ERROR(InitializeInput(arg_def, param_name_to_index));
}
TF_RETURN_IF_ERROR(CheckParamNames());
// Filter out any unused entries from inputs_with_*_attrs_.
RemoveIf(
[](const InputsWithTypeAttr& input) {
return input.tensor_params.empty() && input.tensor_list_params.empty();
},
&inputs_with_type_attrs_);
RemoveIf(
[](const InputsWithTypeListAttr& input) {
return input.tensor_list_params.empty();
},
&inputs_with_type_list_attrs_);
RemoveIf(
[](const InputsWithNumberAttr& input) {
return input.tensor_list_params.empty();
},
&inputs_with_number_attrs_);
return OkStatus();
}
Status PythonAPIInfo::CheckParamNames() const {
std::vector<bool> param_found(param_names_.size());
for (const auto& attr : attributes_) {
if (attr.index != -1) {
param_found[attr.index] = true;
}
}
for (const auto& input : inputs_) {
param_found[input.index] = true;
}
for (int i = 0; i < param_names_.size(); ++i) {
if (param_names_[i] == std::string("name")) {
continue;
}
if (!param_found[i]) {
return errors::InvalidArgument(
api_name_, ": missing specification for parameter ", param_names_[i]);
}
}
return OkStatus();
}
Status PythonAPIInfo::InitializeFromRegisteredOp(const std::string& op_name) {
const tensorflow::OpDef* op_def = nullptr;
TF_RETURN_IF_ERROR(
tensorflow::OpRegistry::Global()->LookUpOpDef(op_name, &op_def));
std::vector<std::string> param_names;
Safe_PyObjectPtr defaults_tuple;
GetOpDefNamesAndDefaults(*op_def, param_names, defaults_tuple);
TF_RETURN_IF_ERROR(Initialize(*op_def, param_names, defaults_tuple.get()));
return OkStatus();
}
Status PythonAPIInfo::InitializeFromParamSpecs(
const std::map<std::string, std::string>& input_specs,
const std::map<std::string, std::string>& attr_specs,
const std::vector<string> param_names, PyObject* defaults_tuple) {
OpDefBuilder op_def_builder(api_name_);
op_def_builder.AllowAttrTypeAny();
for (const auto& attr_spec : attr_specs) {
op_def_builder.Attr(absl::StrCat(attr_spec.first, ": ", attr_spec.second));
}
for (const auto& input_spec : input_specs) {
op_def_builder.Input(
absl::StrCat(input_spec.first, ": ", input_spec.second));
}
OpRegistrationData op_reg_data;
TF_RETURN_IF_ERROR(op_def_builder.Finalize(&op_reg_data));
TF_RETURN_IF_ERROR(
Initialize(op_reg_data.op_def, param_names, defaults_tuple));
return OkStatus();
}
Status PythonAPIInfo::InitializeAttribute(
const OpDef::AttrDef& attr_def,
const std::map<std::string, int>& param_name_to_index) {
if (attr_def.name() == "name") {
return errors::InvalidArgument(
api_name_, ": Reserved parameter `name` was used as an attribute.");
}
const char* name = InternPyString(attr_def.name());
const int param_index =
gtl::FindWithDefault(param_name_to_index, attr_def.name(), -1);
const AttributeType dtype = AttributeTypeFromName(attr_def.type());
const int inferred_index = -1;
attributes_.push_back({param_index, dtype, name, inferred_index});
Attribute& attr = attributes_.back();
if (attr.type == AttributeType::UNKNOWN) {
return errors::InvalidArgument(api_name_, ": Bad attribute type for ",
attr_def.name(), ": '", attr_def.type(),
"'");
}
std::vector<DataType>* ok_dtypes = nullptr;
if (attr.type == AttributeType::DTYPE) {
DataType default_dtype = attr_def.has_default_value()
? attr_def.default_value().type()
: DT_INVALID;
inputs_with_type_attrs_.push_back({&attr, default_dtype});
ok_dtypes = &inputs_with_type_attrs_.back().ok_dtypes;
} else if (attr.type == AttributeType::LIST_DTYPE) {
inputs_with_type_list_attrs_.push_back({&attr});
for (int d : attr_def.default_value().list().type()) {
inputs_with_type_list_attrs_.back().default_dtypes.push_back(
static_cast<DataType>(d));
}
ok_dtypes = &inputs_with_type_list_attrs_.back().ok_dtypes;
}
if (attr_def.has_allowed_values() && ok_dtypes) {
const auto& dtypes = attr_def.allowed_values().list();
for (int i = 0; i < dtypes.type_size(); ++i) {
ok_dtypes->push_back(dtypes.type(i));
}
}
if (attr.type == AttributeType::INT) {
int64_t default_len =
attr_def.has_default_value() ? attr_def.default_value().i() : -1;
inputs_with_number_attrs_.push_back({&attr, default_len});
}
// If this is an inferred attribute, then record its name and index.
if (attr.index == -1) {
std::vector<const char*>* inferred_attr_names =
attr.type == AttributeType::DTYPE ? &inferred_type_attrs_
: attr.type == AttributeType::LIST_DTYPE ? &inferred_type_list_attrs_
: attr.type == AttributeType::INT ? &inferred_length_attrs_
: nullptr;
if (inferred_attr_names == nullptr) {
return errors::InvalidArgument(
api_name_, ": Missing specification for parameter ", attr_def.name());
} else {
attr.inferred_index = inferred_attr_names->size();
inferred_attr_names->push_back(attr.name);
}
}
return OkStatus();
}
Status PythonAPIInfo::InitializeInput(
const OpDef::ArgDef& arg_def,
const std::map<std::string, ParamIndex>& param_name_to_index) {
if (arg_def.name() == "name") {
return errors::InvalidArgument(
api_name_, ": Reserved parameter `name` was used as a tensor input.");
}
const ParamIndex param_index =
gtl::FindWithDefault(param_name_to_index, arg_def.name(), -1);
if (param_index == -1) {
return errors::InvalidArgument(
api_name_, ": Missing specification for parameter ", arg_def.name());
}
if (arg_def.is_ref()) {
// TODO(b/164980194): Support reference parameters.
// - Pass as_ref to convert_to_tensor
// - Check that values for ref inputs have ref types.
return errors::InvalidArgument(api_name_,
": PythonAPIInfo doesn't support reference "
"parameters yet.");
}
bool is_list =
!arg_def.number_attr().empty() || !arg_def.type_list_attr().empty();
inputs_.push_back({param_index, is_list});
if (!arg_def.type_list_attr().empty()) {
// list(input) with dtypes specified by a `list(type)` attribute.
InputsWithTypeListAttr* input =
FindInputsWithTypeListAttr(arg_def.type_list_attr());
if (!input) {
return errors::InvalidArgument(
api_name_, ": Type attribute ", arg_def.type_list_attr(),
" for parameter ", arg_def.name(), " not found.");
}
input->tensor_list_params.push_back(param_index);
} else if (!arg_def.type_attr().empty()) {
InputsWithTypeAttr* input = FindInputsWithTypeAttr(arg_def.type_attr());
// input or list(input) with dtype specified by a `type` attribute.
if (!input) {
return errors::InvalidArgument(api_name_, ": Type attribute ",
arg_def.type_attr(), " for parameter ",
arg_def.name(), " not found.");
}
if (arg_def.number_attr().empty()) {
input->tensor_params.push_back(param_index);
} else {
input->tensor_list_params.push_back(param_index);
}
} else {
// input or list(input) with fixed dtype
inputs_with_fixed_dtype_.push_back({arg_def.type(), param_index, is_list});
}
if (!arg_def.number_attr().empty()) {
InputsWithNumberAttr* input =
FindInputsWithNumberAttr(arg_def.number_attr());
if (!input) {
return errors::InvalidArgument(api_name_, ": Length attribute ",
arg_def.number_attr(), " for parameter ",
arg_def.name(), " not found.");
}
input->tensor_list_params.push_back(param_index);
}
return OkStatus();
}
PythonAPIInfo::InputsWithTypeAttr* PythonAPIInfo::FindInputsWithTypeAttr(
const string& name) {
for (auto& input : inputs_with_type_attrs_) {
if (name == input.type_attr->name) {
return &input;
}
}
return nullptr;
}
PythonAPIInfo::InputsWithTypeListAttr*
PythonAPIInfo::FindInputsWithTypeListAttr(const string& name) {
for (auto& input : inputs_with_type_list_attrs_) {
if (name == input.type_list_attr->name) {
return &input;
}
}
return nullptr;
}
PythonAPIInfo::InputsWithNumberAttr* PythonAPIInfo::FindInputsWithNumberAttr(
const string& name) {
for (auto& input : inputs_with_number_attrs_) {
if (name == input.number_attr->name) {
return &input;
}
}
return nullptr;
}
string PythonAPIInfo::DebugInfo() const {
string s = absl::StrCat("DebugInfo for ", api_name_, ":\n");
absl::StrAppend(&s, " param_names=[", absl::StrJoin(param_names_, ", "),
"]\n");
Safe_PyObjectPtr defaults_repr(PyObject_Repr(defaults_tuple_.get()));
absl::StrAppend(
&s, " defaults_tuple=", TFE_GetPythonString(defaults_repr.get()), "\n");
if (!attributes_.empty()) {
absl::StrAppend(&s, " attributes=[");
for (const auto& attrib : attributes_) {
if (attrib.index != -1) {
absl::StrAppend(&s, "\n {index=", attrib.index);
DCHECK_EQ(attrib.inferred_index, -1);
} else {
absl::StrAppend(&s, "\n {inferred_index=", attrib.inferred_index);
}
absl::StrAppend(&s, ", name=", attrib.name,
", type=", AttributeTypeToName(attrib.type), "},");
}
absl::StrAppend(&s, "]\n");
}
if (!inputs_.empty()) {
absl::StrAppend(&s, " inputs=[");
for (const auto& input : inputs_) {
absl::StrAppend(&s, "\n {index=", input.index,
", name=", param_names_[input.index],
", is_list=", input.is_list, "},");
}
absl::StrAppend(&s, "]\n");
}
if (!inputs_with_fixed_dtype_.empty()) {
absl::StrAppend(&s, " inputs_with_fixed_dtype=[");
for (const auto& input : inputs_with_fixed_dtype_) {
absl::StrAppend(&s, "\n {index=", input.index,
", dtype=", DataType_Name(input.dtype),
", is_list=", input.is_list, "},");
}
absl::StrAppend(&s, "]\n");
}
if (!inputs_with_type_attrs_.empty()) {
absl::StrAppend(&s, " inputs_with_type_attr=[");
for (const auto& input : inputs_with_type_attrs_) {
absl::StrAppend(&s, "\n {type_attr=", input.type_attr->name);
if (input.default_dtype != DT_INVALID) {
absl::StrAppend(&s,
", default_dtype=", DataType_Name(input.default_dtype));
}
if (!input.tensor_params.empty()) {
absl::StrAppend(&s, ", tensor_params=[",
absl::StrJoin(input.tensor_params, ", "), "]");
}
if (!input.tensor_list_params.empty()) {
absl::StrAppend(&s, ", tensor_list_params=[",
absl::StrJoin(input.tensor_list_params, ", "), "]");
}
if (!input.ok_dtypes.empty()) {
absl::StrAppend(
&s, ", ok_dtypes=[",
absl::StrJoin(input.ok_dtypes, ", ", DataTypeFormatter()), "]");
}
absl::StrAppend(&s, "},");
}
absl::StrAppend(&s, "]\n");
}
if (!inputs_with_type_list_attrs_.empty()) {
absl::StrAppend(&s, " inputs_with_type_list_attrs=[");
for (const auto& input : inputs_with_type_list_attrs_) {
absl::StrAppend(&s, "\n {type_list_attr=", input.type_list_attr->name);
if (!input.default_dtypes.empty()) {
absl::StrAppend(
&s, ", default_dtypes=[",
absl::StrJoin(input.default_dtypes, ", ", DataTypeFormatter()),
"]");
}
if (!input.tensor_list_params.empty()) {
absl::StrAppend(&s, ", tensor_list_params=[",
absl::StrJoin(input.tensor_list_params, ", "), "]");
}
if (!input.ok_dtypes.empty()) {
absl::StrAppend(
&s, ", ok_dtypes=[",
absl::StrJoin(input.ok_dtypes, ", ", DataTypeFormatter()), "]");
}
absl::StrAppend(&s, "},");
}
absl::StrAppend(&s, "]\n");
}
if (!inputs_with_number_attrs_.empty()) {
absl::StrAppend(&s, " inputs_with_number_attrs=[");
for (const auto& input : inputs_with_number_attrs_) {
absl::StrAppend(&s, "\n {number_attr=", input.number_attr->name,
", default_length=", input.default_length,
", tensor_list_params=[",
absl::StrJoin(input.tensor_list_params, ", "), "],\n");
}
absl::StrAppend(&s, "]\n");
}
if (!inferred_type_attrs_.empty()) {
absl::StrAppend(&s, " inferred_type_attrs=[",
absl::StrJoin(inferred_type_attrs_, ", "), "]\n");
}
if (!inferred_type_list_attrs_.empty()) {
absl::StrAppend(&s, " inferred_type_list_attrs=[",
absl::StrJoin(inferred_type_list_attrs_, ", "), "]\n");
}
if (!inferred_length_attrs_.empty()) {
absl::StrAppend(&s, " inferred_length_attrs=[",
absl::StrJoin(inferred_length_attrs_, ", "), "]\n");
}
return s;
}
} // namespace tensorflow