-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconstraints.py
352 lines (284 loc) · 11.8 KB
/
constraints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
# pylint: disable=g-classes-have-attributes
"""Constraints: functions that impose constraints on weight values."""
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend
from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import while_loop
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls
@keras_export('keras.constraints.Constraint')
class Constraint:
"""Base class for weight constraints.
A `Constraint` instance works like a stateless function.
Users who subclass this
class should override the `__call__` method, which takes a single
weight parameter and return a projected version of that parameter
(e.g. normalized or clipped). Constraints can be used with various Keras
layers via the `kernel_constraint` or `bias_constraint` arguments.
Here's a simple example of a non-negative weight constraint:
>>> class NonNegative(tf.keras.constraints.Constraint):
...
... def __call__(self, w):
... return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype)
>>> weight = tf.constant((-1.0, 1.0))
>>> NonNegative()(weight)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 1.], dtype=float32)>
>>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative())
"""
def __call__(self, w):
"""Applies the constraint to the input weight variable.
By default, the inputs weight variable is not modified.
Users should override this method to implement their own projection
function.
Args:
w: Input weight variable.
Returns:
Projected variable (by default, returns unmodified inputs).
"""
return w
def get_config(self):
"""Returns a Python dict of the object config.
A constraint config is a Python dictionary (JSON-serializable) that can
be used to reinstantiate the same object.
Returns:
Python dict containing the configuration of the constraint object.
"""
return {}
@keras_export('keras.constraints.MaxNorm', 'keras.constraints.max_norm')
class MaxNorm(Constraint):
"""MaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have a norm less than or equal to a desired value.
Also available via the shortcut function `tf.keras.constraints.max_norm`.
Args:
max_value: the maximum norm value for the incoming weights.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, max_value=2, axis=0):
self.max_value = max_value
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
norms = backend.sqrt(
math_ops.reduce_sum(math_ops.square(w), axis=self.axis, keepdims=True))
desired = backend.clip(norms, 0, self.max_value)
return w * (desired / (backend.epsilon() + norms))
@doc_controls.do_not_generate_docs
def get_config(self):
return {'max_value': self.max_value, 'axis': self.axis}
@keras_export('keras.constraints.NonNeg', 'keras.constraints.non_neg')
class NonNeg(Constraint):
"""Constrains the weights to be non-negative.
Also available via the shortcut function `tf.keras.constraints.non_neg`.
"""
def __call__(self, w):
return w * math_ops.cast(math_ops.greater_equal(w, 0.), backend.floatx())
@keras_export('keras.constraints.UnitNorm', 'keras.constraints.unit_norm')
class UnitNorm(Constraint):
"""Constrains the weights incident to each hidden unit to have unit norm.
Also available via the shortcut function `tf.keras.constraints.unit_norm`.
Args:
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, axis=0):
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
return w / (
backend.epsilon() + backend.sqrt(
math_ops.reduce_sum(
math_ops.square(w), axis=self.axis, keepdims=True)))
@doc_controls.do_not_generate_docs
def get_config(self):
return {'axis': self.axis}
@keras_export('keras.constraints.MinMaxNorm', 'keras.constraints.min_max_norm')
class MinMaxNorm(Constraint):
"""MinMaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have the norm between a lower bound and an upper bound.
Also available via the shortcut function `tf.keras.constraints.min_max_norm`.
Args:
min_value: the minimum norm for the incoming weights.
max_value: the maximum norm for the incoming weights.
rate: rate for enforcing the constraint: weights will be
rescaled to yield
`(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
Effectively, this means that rate=1.0 stands for strict
enforcement of the constraint, while rate<1.0 means that
weights will be rescaled at each step to slowly move
towards a value inside the desired interval.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0):
self.min_value = min_value
self.max_value = max_value
self.rate = rate
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
norms = backend.sqrt(
math_ops.reduce_sum(math_ops.square(w), axis=self.axis, keepdims=True))
desired = (
self.rate * backend.clip(norms, self.min_value, self.max_value) +
(1 - self.rate) * norms)
return w * (desired / (backend.epsilon() + norms))
@doc_controls.do_not_generate_docs
def get_config(self):
return {
'min_value': self.min_value,
'max_value': self.max_value,
'rate': self.rate,
'axis': self.axis
}
@keras_export('keras.constraints.RadialConstraint',
'keras.constraints.radial_constraint')
class RadialConstraint(Constraint):
"""Constrains `Conv2D` kernel weights to be the same for each radius.
Also available via the shortcut function
`tf.keras.constraints.radial_constraint`.
For example, the desired output for the following 4-by-4 kernel:
```
kernel = [[v_00, v_01, v_02, v_03],
[v_10, v_11, v_12, v_13],
[v_20, v_21, v_22, v_23],
[v_30, v_31, v_32, v_33]]
```
is this::
```
kernel = [[v_11, v_11, v_11, v_11],
[v_11, v_33, v_33, v_11],
[v_11, v_33, v_33, v_11],
[v_11, v_11, v_11, v_11]]
```
This constraint can be applied to any `Conv2D` layer version, including
`Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"` or
`"channels_first"` data format. The method assumes the weight tensor is of
shape `(rows, cols, input_depth, output_depth)`.
"""
@doc_controls.do_not_generate_docs
def __call__(self, w):
w_shape = w.shape
if w_shape.rank is None or w_shape.rank != 4:
raise ValueError(
'The weight tensor must be of rank 4, but is of shape: %s' % w_shape)
height, width, channels, kernels = w_shape
w = backend.reshape(w, (height, width, channels * kernels))
# TODO(cpeter): Switch map_fn for a faster tf.vectorized_map once
# backend.switch is supported.
w = backend.map_fn(
self._kernel_constraint,
backend.stack(array_ops_stack.unstack(w, axis=-1), axis=0))
return backend.reshape(
backend.stack(array_ops_stack.unstack(w, axis=0), axis=-1),
(height, width, channels, kernels))
def _kernel_constraint(self, kernel):
"""Radially constraints a kernel with shape (height, width, channels)."""
padding = backend.constant([[1, 1], [1, 1]], dtype='int32')
kernel_shape = backend.shape(kernel)[0]
start = backend.cast(kernel_shape / 2, 'int32')
kernel_new = backend.switch(
backend.cast(math_ops.floormod(kernel_shape, 2), 'bool'),
lambda: kernel[start - 1:start, start - 1:start],
lambda: kernel[start - 1:start, start - 1:start] + backend.zeros( # pylint: disable=g-long-lambda
(2, 2), dtype=kernel.dtype))
index = backend.switch(
backend.cast(math_ops.floormod(kernel_shape, 2), 'bool'),
lambda: backend.constant(0, dtype='int32'),
lambda: backend.constant(1, dtype='int32'))
while_condition = lambda index, *args: backend.less(index, start)
def body_fn(i, array):
return i + 1, array_ops.pad(
array,
padding,
constant_values=kernel[start + i, start + i])
_, kernel_new = while_loop.while_loop(
while_condition,
body_fn, [index, kernel_new],
shape_invariants=[
index.get_shape(),
tensor_shape.TensorShape([None, None])
])
return kernel_new
# Aliases.
max_norm = MaxNorm
non_neg = NonNeg
unit_norm = UnitNorm
min_max_norm = MinMaxNorm
radial_constraint = RadialConstraint
# Legacy aliases.
maxnorm = max_norm
nonneg = non_neg
unitnorm = unit_norm
@keras_export('keras.constraints.serialize')
def serialize(constraint):
return serialize_keras_object(constraint)
@keras_export('keras.constraints.deserialize')
def deserialize(config, custom_objects=None):
return deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name='constraint')
@keras_export('keras.constraints.get')
def get(identifier):
if identifier is None:
return None
if isinstance(identifier, dict):
return deserialize(identifier)
elif isinstance(identifier, str):
config = {'class_name': str(identifier), 'config': {}}
return deserialize(config)
elif callable(identifier):
return identifier
else:
raise ValueError('Could not interpret constraint identifier: ' +
str(identifier))