-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkeras_parameterized.py
478 lines (376 loc) · 17.3 KB
/
keras_parameterized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for unit-testing Keras."""
import collections
import functools
import itertools
import unittest
from absl.testing import parameterized
from tensorflow.python import keras
from tensorflow.python import tf2
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
from tensorflow.python.util import nest
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
class TestCase(test.TestCase, parameterized.TestCase):
def tearDown(self):
keras.backend.clear_session()
super(TestCase, self).tearDown()
def run_with_all_saved_model_formats(
test_or_class=None,
exclude_formats=None):
"""Execute the decorated test with all Keras saved model formats).
This decorator is intended to be applied either to individual test methods in
a `keras_parameterized.TestCase` class, or directly to a test class that
extends it. Doing so will cause the contents of the individual test
method (or all test methods in the class) to be executed multiple times - once
for each Keras saved model format.
The Keras saved model formats include:
1. HDF5: 'h5'
2. SavedModel: 'tf'
Note: if stacking this decorator with absl.testing's parameterized decorators,
those should be at the bottom of the stack.
Various methods in `testing_utils` to get file path for saved models will
auto-generate a string of the two saved model formats. This allows unittests
to confirm the equivalence between the two Keras saved model formats.
For example, consider the following unittest:
```python
class MyTests(testing_utils.KerasTestCase):
@testing_utils.run_with_all_saved_model_formats
def test_foo(self):
save_format = testing_utils.get_save_format()
saved_model_dir = '/tmp/saved_model/'
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
keras.models.save_model(model, saved_model_dir, save_format=save_format)
model = keras.models.load_model(saved_model_dir)
if __name__ == "__main__":
tf.test.main()
```
This test tries to save the model into the formats of 'hdf5', 'h5', 'keras',
'tensorflow', and 'tf'.
We can also annotate the whole class if we want this to apply to all tests in
the class:
```python
@testing_utils.run_with_all_saved_model_formats
class MyTests(testing_utils.KerasTestCase):
def test_foo(self):
save_format = testing_utils.get_save_format()
saved_model_dir = '/tmp/saved_model/'
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
keras.models.save_model(model, saved_model_dir, save_format=save_format)
model = tf.keras.models.load_model(saved_model_dir)
if __name__ == "__main__":
tf.test.main()
```
Args:
test_or_class: test method or class to be annotated. If None,
this method returns a decorator that can be applied to a test method or
test class. If it is not None this returns the decorator applied to the
test or class.
exclude_formats: A collection of Keras saved model formats to not run.
(May also be a single format not wrapped in a collection).
Defaults to None.
Returns:
Returns a decorator that will run the decorated test method multiple times:
once for each desired Keras saved model format.
Raises:
ImportError: If abseil parameterized is not installed or not included as
a target dependency.
"""
# Exclude h5 save format if H5py isn't available.
if h5py is None:
exclude_formats.append(['h5'])
saved_model_formats = ['h5', 'tf', 'tf_no_traces']
params = [('_%s' % saved_format, saved_format)
for saved_format in saved_model_formats
if saved_format not in nest.flatten(exclude_formats)]
def single_method_decorator(f):
"""Decorator that constructs the test cases."""
# Use named_parameters so it can be individually run from the command line
@parameterized.named_parameters(*params)
@functools.wraps(f)
def decorated(self, saved_format, *args, **kwargs):
"""A run of a single test case w/ the specified model type."""
if saved_format == 'h5':
_test_h5_saved_model_format(f, self, *args, **kwargs)
elif saved_format == 'tf':
_test_tf_saved_model_format(f, self, *args, **kwargs)
elif saved_format == 'tf_no_traces':
_test_tf_saved_model_format_no_traces(f, self, *args, **kwargs)
else:
raise ValueError('Unknown model type: %s' % (saved_format,))
return decorated
return _test_or_class_decorator(test_or_class, single_method_decorator)
def _test_h5_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('h5'):
f(test_or_class, *args, **kwargs)
def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf'):
f(test_or_class, *args, **kwargs)
def _test_tf_saved_model_format_no_traces(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf', save_traces=False):
f(test_or_class, *args, **kwargs)
def run_with_all_weight_formats(test_or_class=None, exclude_formats=None):
"""Runs all tests with the supported formats for saving weights."""
exclude_formats = exclude_formats or []
exclude_formats.append('tf_no_traces') # Only applies to saving models
return run_with_all_saved_model_formats(test_or_class, exclude_formats)
# TODO(kaftan): Possibly enable 'subclass_custom_build' when tests begin to pass
# it. Or perhaps make 'subclass' always use a custom build method.
def run_with_all_model_types(
test_or_class=None,
exclude_models=None):
"""Execute the decorated test with all Keras model types.
This decorator is intended to be applied either to individual test methods in
a `keras_parameterized.TestCase` class, or directly to a test class that
extends it. Doing so will cause the contents of the individual test
method (or all test methods in the class) to be executed multiple times - once
for each Keras model type.
The Keras model types are: ['functional', 'subclass', 'sequential']
Note: if stacking this decorator with absl.testing's parameterized decorators,
those should be at the bottom of the stack.
Various methods in `testing_utils` to get models will auto-generate a model
of the currently active Keras model type. This allows unittests to confirm
the equivalence between different Keras models.
For example, consider the following unittest:
```python
class MyTests(testing_utils.KerasTestCase):
@testing_utils.run_with_all_model_types(
exclude_models = ['sequential'])
def test_foo(self):
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
if __name__ == "__main__":
tf.test.main()
```
This test tries building a small mlp as both a functional model and as a
subclass model.
We can also annotate the whole class if we want this to apply to all tests in
the class:
```python
@testing_utils.run_with_all_model_types(exclude_models = ['sequential'])
class MyTests(testing_utils.KerasTestCase):
def test_foo(self):
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
if __name__ == "__main__":
tf.test.main()
```
Args:
test_or_class: test method or class to be annotated. If None,
this method returns a decorator that can be applied to a test method or
test class. If it is not None this returns the decorator applied to the
test or class.
exclude_models: A collection of Keras model types to not run.
(May also be a single model type not wrapped in a collection).
Defaults to None.
Returns:
Returns a decorator that will run the decorated test method multiple times:
once for each desired Keras model type.
Raises:
ImportError: If abseil parameterized is not installed or not included as
a target dependency.
"""
model_types = ['functional', 'subclass', 'sequential']
params = [('_%s' % model, model) for model in model_types
if model not in nest.flatten(exclude_models)]
def single_method_decorator(f):
"""Decorator that constructs the test cases."""
# Use named_parameters so it can be individually run from the command line
@parameterized.named_parameters(*params)
@functools.wraps(f)
def decorated(self, model_type, *args, **kwargs):
"""A run of a single test case w/ the specified model type."""
if model_type == 'functional':
_test_functional_model_type(f, self, *args, **kwargs)
elif model_type == 'subclass':
_test_subclass_model_type(f, self, *args, **kwargs)
elif model_type == 'sequential':
_test_sequential_model_type(f, self, *args, **kwargs)
else:
raise ValueError('Unknown model type: %s' % (model_type,))
return decorated
return _test_or_class_decorator(test_or_class, single_method_decorator)
def _test_functional_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('functional'):
f(test_or_class, *args, **kwargs)
def _test_subclass_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('subclass'):
f(test_or_class, *args, **kwargs)
def _test_sequential_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('sequential'):
f(test_or_class, *args, **kwargs)
def run_all_keras_modes(test_or_class=None,
config=None,
always_skip_v1=False,
always_skip_eager=False,
**kwargs):
"""Execute the decorated test with all keras execution modes.
This decorator is intended to be applied either to individual test methods in
a `keras_parameterized.TestCase` class, or directly to a test class that
extends it. Doing so will cause the contents of the individual test
method (or all test methods in the class) to be executed multiple times -
once executing in legacy graph mode, once running eagerly and with
`should_run_eagerly` returning True, and once running eagerly with
`should_run_eagerly` returning False.
If Tensorflow v2 behavior is enabled, legacy graph mode will be skipped, and
the test will only run twice.
Note: if stacking this decorator with absl.testing's parameterized decorators,
those should be at the bottom of the stack.
For example, consider the following unittest:
```python
class MyTests(testing_utils.KerasTestCase):
@testing_utils.run_all_keras_modes
def test_foo(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(
optimizer, loss, metrics=metrics,
run_eagerly=testing_utils.should_run_eagerly())
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
if __name__ == "__main__":
tf.test.main()
```
This test will try compiling & fitting the small functional mlp using all
three Keras execution modes.
Args:
test_or_class: test method or class to be annotated. If None,
this method returns a decorator that can be applied to a test method or
test class. If it is not None this returns the decorator applied to the
test or class.
config: An optional config_pb2.ConfigProto to use to configure the
session when executing graphs.
always_skip_v1: If True, does not try running the legacy graph mode even
when Tensorflow v2 behavior is not enabled.
always_skip_eager: If True, does not execute the decorated test
with eager execution modes.
**kwargs: Additional kwargs for configuring tests for
in-progress Keras behaviors/ refactorings that we haven't fully
rolled out yet
Returns:
Returns a decorator that will run the decorated test method multiple times.
Raises:
ImportError: If abseil parameterized is not installed or not included as
a target dependency.
"""
if kwargs:
raise ValueError('Unrecognized keyword args: {}'.format(kwargs))
params = [('_v2_function', 'v2_function')]
if not always_skip_eager:
params.append(('_v2_eager', 'v2_eager'))
if not (always_skip_v1 or tf2.enabled()):
params.append(('_v1_session', 'v1_session'))
def single_method_decorator(f):
"""Decorator that constructs the test cases."""
# Use named_parameters so it can be individually run from the command line
@parameterized.named_parameters(*params)
@functools.wraps(f)
def decorated(self, run_mode, *args, **kwargs):
"""A run of a single test case w/ specified run mode."""
if run_mode == 'v1_session':
_v1_session_test(f, self, config, *args, **kwargs)
elif run_mode == 'v2_eager':
_v2_eager_test(f, self, *args, **kwargs)
elif run_mode == 'v2_function':
_v2_function_test(f, self, *args, **kwargs)
else:
return ValueError('Unknown run mode %s' % run_mode)
return decorated
return _test_or_class_decorator(test_or_class, single_method_decorator)
def _v1_session_test(f, test_or_class, config, *args, **kwargs):
with ops.get_default_graph().as_default():
with testing_utils.run_eagerly_scope(False):
with test_or_class.test_session(config=config):
f(test_or_class, *args, **kwargs)
def _v2_eager_test(f, test_or_class, *args, **kwargs):
with context.eager_mode():
with testing_utils.run_eagerly_scope(True):
f(test_or_class, *args, **kwargs)
def _v2_function_test(f, test_or_class, *args, **kwargs):
with context.eager_mode():
with testing_utils.run_eagerly_scope(False):
f(test_or_class, *args, **kwargs)
def _test_or_class_decorator(test_or_class, single_method_decorator):
"""Decorate a test or class with a decorator intended for one method.
If the test_or_class is a class:
This will apply the decorator to all test methods in the class.
If the test_or_class is an iterable of already-parameterized test cases:
This will apply the decorator to all the cases, and then flatten the
resulting cross-product of test cases. This allows stacking the Keras
parameterized decorators w/ each other, and to apply them to test methods
that have already been marked with an absl parameterized decorator.
Otherwise, treat the obj as a single method and apply the decorator directly.
Args:
test_or_class: A test method (that may have already been decorated with a
parameterized decorator, or a test class that extends
keras_parameterized.TestCase
single_method_decorator:
A parameterized decorator intended for a single test method.
Returns:
The decorated result.
"""
def _decorate_test_or_class(obj):
if isinstance(obj, collections.abc.Iterable):
return itertools.chain.from_iterable(
single_method_decorator(method) for method in obj)
if isinstance(obj, type):
cls = obj
for name, value in cls.__dict__.copy().items():
if callable(value) and name.startswith(
unittest.TestLoader.testMethodPrefix):
setattr(cls, name, single_method_decorator(value))
cls = type(cls).__new__(type(cls), cls.__name__, cls.__bases__,
cls.__dict__.copy())
return cls
return single_method_decorator(obj)
if test_or_class is not None:
return _decorate_test_or_class(test_or_class)
return _decorate_test_or_class