-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtesting_utils.py
1089 lines (882 loc) · 36.6 KB
/
testing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for unit-testing Keras."""
import collections
import contextlib
import functools
import itertools
import threading
import numpy as np
from tensorflow.python import tf2
from tensorflow.python.eager import context
from tensorflow.python.framework import config
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import test_util
from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
from tensorflow.python.keras import models
from tensorflow.python.keras.engine import base_layer_utils
from tensorflow.python.keras.optimizer_v2 import adadelta as adadelta_v2
from tensorflow.python.keras.optimizer_v2 import adagrad as adagrad_v2
from tensorflow.python.keras.optimizer_v2 import adam as adam_v2
from tensorflow.python.keras.optimizer_v2 import adamax as adamax_v2
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
from tensorflow.python.keras.optimizer_v2 import nadam as nadam_v2
from tensorflow.python.keras.optimizer_v2 import rmsprop as rmsprop_v2
from tensorflow.python.keras.utils import tf_contextlib
from tensorflow.python.keras.utils import tf_inspect
from tensorflow.python.util import tf_decorator
def string_test(actual, expected):
np.testing.assert_array_equal(actual, expected)
def numeric_test(actual, expected):
np.testing.assert_allclose(actual, expected, rtol=1e-3, atol=1e-6)
def get_test_data(train_samples,
test_samples,
input_shape,
num_classes,
random_seed=None):
"""Generates test data to train a model on.
Args:
train_samples: Integer, how many training samples to generate.
test_samples: Integer, how many test samples to generate.
input_shape: Tuple of integers, shape of the inputs.
num_classes: Integer, number of classes for the data and targets.
random_seed: Integer, random seed used by numpy to generate data.
Returns:
A tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
"""
if random_seed is not None:
np.random.seed(random_seed)
num_sample = train_samples + test_samples
templates = 2 * num_classes * np.random.random((num_classes,) + input_shape)
y = np.random.randint(0, num_classes, size=(num_sample,))
x = np.zeros((num_sample,) + input_shape, dtype=np.float32)
for i in range(num_sample):
x[i] = templates[y[i]] + np.random.normal(loc=0, scale=1., size=input_shape)
return ((x[:train_samples], y[:train_samples]),
(x[train_samples:], y[train_samples:]))
@test_util.disable_cudnn_autotune
def layer_test(layer_cls,
kwargs=None,
input_shape=None,
input_dtype=None,
input_data=None,
expected_output=None,
expected_output_dtype=None,
expected_output_shape=None,
validate_training=True,
adapt_data=None,
custom_objects=None,
test_harness=None,
supports_masking=None):
"""Test routine for a layer with a single input and single output.
Args:
layer_cls: Layer class object.
kwargs: Optional dictionary of keyword arguments for instantiating the
layer.
input_shape: Input shape tuple.
input_dtype: Data type of the input data.
input_data: Numpy array of input data.
expected_output: Numpy array of the expected output.
expected_output_dtype: Data type expected for the output.
expected_output_shape: Shape tuple for the expected shape of the output.
validate_training: Whether to attempt to validate training on this layer.
This might be set to False for non-differentiable layers that output
string or integer values.
adapt_data: Optional data for an 'adapt' call. If None, adapt() will not
be tested for this layer. This is only relevant for PreprocessingLayers.
custom_objects: Optional dictionary mapping name strings to custom objects
in the layer class. This is helpful for testing custom layers.
test_harness: The Tensorflow test, if any, that this function is being
called in.
supports_masking: Optional boolean to check the `supports_masking` property
of the layer. If None, the check will not be performed.
Returns:
The output data (Numpy array) returned by the layer, for additional
checks to be done by the calling code.
Raises:
ValueError: if `input_shape is None`.
"""
if input_data is None:
if input_shape is None:
raise ValueError('input_shape is None')
if not input_dtype:
input_dtype = 'float32'
input_data_shape = list(input_shape)
for i, e in enumerate(input_data_shape):
if e is None:
input_data_shape[i] = np.random.randint(1, 4)
input_data = 10 * np.random.random(input_data_shape)
if input_dtype[:5] == 'float':
input_data -= 0.5
input_data = input_data.astype(input_dtype)
elif input_shape is None:
input_shape = input_data.shape
if input_dtype is None:
input_dtype = input_data.dtype
if expected_output_dtype is None:
expected_output_dtype = input_dtype
if dtypes.as_dtype(expected_output_dtype) == dtypes.string:
if test_harness:
assert_equal = test_harness.assertAllEqual
else:
assert_equal = string_test
else:
if test_harness:
assert_equal = test_harness.assertAllClose
else:
assert_equal = numeric_test
# instantiation
kwargs = kwargs or {}
layer = layer_cls(**kwargs)
if (supports_masking is not None
and layer.supports_masking != supports_masking):
raise AssertionError(
'When testing layer %s, the `supports_masking` property is %r'
'but expected to be %r.\nFull kwargs: %s' %
(layer_cls.__name__, layer.supports_masking, supports_masking, kwargs))
# Test adapt, if data was passed.
if adapt_data is not None:
layer.adapt(adapt_data)
# test get_weights , set_weights at layer level
weights = layer.get_weights()
layer.set_weights(weights)
# test and instantiation from weights
if 'weights' in tf_inspect.getargspec(layer_cls.__init__):
kwargs['weights'] = weights
layer = layer_cls(**kwargs)
# test in functional API
x = layers.Input(shape=input_shape[1:], dtype=input_dtype)
y = layer(x)
if backend.dtype(y) != expected_output_dtype:
raise AssertionError('When testing layer %s, for input %s, found output '
'dtype=%s but expected to find %s.\nFull kwargs: %s' %
(layer_cls.__name__, x, backend.dtype(y),
expected_output_dtype, kwargs))
def assert_shapes_equal(expected, actual):
"""Asserts that the output shape from the layer matches the actual shape."""
if len(expected) != len(actual):
raise AssertionError(
'When testing layer %s, for input %s, found output_shape='
'%s but expected to find %s.\nFull kwargs: %s' %
(layer_cls.__name__, x, actual, expected, kwargs))
for expected_dim, actual_dim in zip(expected, actual):
if isinstance(expected_dim, tensor_shape.Dimension):
expected_dim = expected_dim.value
if isinstance(actual_dim, tensor_shape.Dimension):
actual_dim = actual_dim.value
if expected_dim is not None and expected_dim != actual_dim:
raise AssertionError(
'When testing layer %s, for input %s, found output_shape='
'%s but expected to find %s.\nFull kwargs: %s' %
(layer_cls.__name__, x, actual, expected, kwargs))
if expected_output_shape is not None:
assert_shapes_equal(tensor_shape.TensorShape(expected_output_shape),
y.shape)
# check shape inference
model = models.Model(x, y)
computed_output_shape = tuple(
layer.compute_output_shape(
tensor_shape.TensorShape(input_shape)).as_list())
computed_output_signature = layer.compute_output_signature(
tensor_spec.TensorSpec(shape=input_shape, dtype=input_dtype))
actual_output = model.predict(input_data)
actual_output_shape = actual_output.shape
assert_shapes_equal(computed_output_shape, actual_output_shape)
assert_shapes_equal(computed_output_signature.shape, actual_output_shape)
if computed_output_signature.dtype != actual_output.dtype:
raise AssertionError(
'When testing layer %s, for input %s, found output_dtype='
'%s but expected to find %s.\nFull kwargs: %s' %
(layer_cls.__name__, x, actual_output.dtype,
computed_output_signature.dtype, kwargs))
if expected_output is not None:
assert_equal(actual_output, expected_output)
# test serialization, weight setting at model level
model_config = model.get_config()
recovered_model = models.Model.from_config(model_config, custom_objects)
if model.weights:
weights = model.get_weights()
recovered_model.set_weights(weights)
output = recovered_model.predict(input_data)
assert_equal(output, actual_output)
# test training mode (e.g. useful for dropout tests)
# Rebuild the model to avoid the graph being reused between predict() and
# See b/120160788 for more details. This should be mitigated after 2.0.
layer_weights = layer.get_weights() # Get the layer weights BEFORE training.
if validate_training:
model = models.Model(x, layer(x))
if _thread_local_data.run_eagerly is not None:
model.compile(
'rmsprop',
'mse',
weighted_metrics=['acc'],
run_eagerly=should_run_eagerly())
else:
model.compile('rmsprop', 'mse', weighted_metrics=['acc'])
model.train_on_batch(input_data, actual_output)
# test as first layer in Sequential API
layer_config = layer.get_config()
layer_config['batch_input_shape'] = input_shape
layer = layer.__class__.from_config(layer_config)
# Test adapt, if data was passed.
if adapt_data is not None:
layer.adapt(adapt_data)
model = models.Sequential()
model.add(layers.Input(shape=input_shape[1:], dtype=input_dtype))
model.add(layer)
layer.set_weights(layer_weights)
actual_output = model.predict(input_data)
actual_output_shape = actual_output.shape
for expected_dim, actual_dim in zip(computed_output_shape,
actual_output_shape):
if expected_dim is not None:
if expected_dim != actual_dim:
raise AssertionError(
'When testing layer %s **after deserialization**, '
'for input %s, found output_shape='
'%s but expected to find inferred shape %s.\nFull kwargs: %s' %
(layer_cls.__name__,
x,
actual_output_shape,
computed_output_shape,
kwargs))
if expected_output is not None:
assert_equal(actual_output, expected_output)
# test serialization, weight setting at model level
model_config = model.get_config()
recovered_model = models.Sequential.from_config(model_config, custom_objects)
if model.weights:
weights = model.get_weights()
recovered_model.set_weights(weights)
output = recovered_model.predict(input_data)
assert_equal(output, actual_output)
# for further checks in the caller function
return actual_output
_thread_local_data = threading.local()
_thread_local_data.model_type = None
_thread_local_data.run_eagerly = None
_thread_local_data.saved_model_format = None
_thread_local_data.save_kwargs = None
@tf_contextlib.contextmanager
def model_type_scope(value):
"""Provides a scope within which the model type to test is equal to `value`.
The model type gets restored to its original value upon exiting the scope.
Args:
value: model type value
Yields:
The provided value.
"""
previous_value = _thread_local_data.model_type
try:
_thread_local_data.model_type = value
yield value
finally:
# Restore model type to initial value.
_thread_local_data.model_type = previous_value
@tf_contextlib.contextmanager
def run_eagerly_scope(value):
"""Provides a scope within which we compile models to run eagerly or not.
The boolean gets restored to its original value upon exiting the scope.
Args:
value: Bool specifying if we should run models eagerly in the active test.
Should be True or False.
Yields:
The provided value.
"""
previous_value = _thread_local_data.run_eagerly
try:
_thread_local_data.run_eagerly = value
yield value
finally:
# Restore model type to initial value.
_thread_local_data.run_eagerly = previous_value
def should_run_eagerly():
"""Returns whether the models we are testing should be run eagerly."""
if _thread_local_data.run_eagerly is None:
raise ValueError('Cannot call `should_run_eagerly()` outside of a '
'`run_eagerly_scope()` or `run_all_keras_modes` '
'decorator.')
return _thread_local_data.run_eagerly and context.executing_eagerly()
@tf_contextlib.contextmanager
def saved_model_format_scope(value, **kwargs):
"""Provides a scope within which the savde model format to test is `value`.
The saved model format gets restored to its original value upon exiting the
scope.
Args:
value: saved model format value
**kwargs: optional kwargs to pass to the save function.
Yields:
The provided value.
"""
previous_format = _thread_local_data.saved_model_format
previous_kwargs = _thread_local_data.save_kwargs
try:
_thread_local_data.saved_model_format = value
_thread_local_data.save_kwargs = kwargs
yield
finally:
# Restore saved model format to initial value.
_thread_local_data.saved_model_format = previous_format
_thread_local_data.save_kwargs = previous_kwargs
def get_save_format():
if _thread_local_data.saved_model_format is None:
raise ValueError(
'Cannot call `get_save_format()` outside of a '
'`saved_model_format_scope()` or `run_with_all_saved_model_formats` '
'decorator.')
return _thread_local_data.saved_model_format
def get_save_kwargs():
if _thread_local_data.save_kwargs is None:
raise ValueError(
'Cannot call `get_save_kwargs()` outside of a '
'`saved_model_format_scope()` or `run_with_all_saved_model_formats` '
'decorator.')
return _thread_local_data.save_kwargs or {}
def get_model_type():
"""Gets the model type that should be tested."""
if _thread_local_data.model_type is None:
raise ValueError('Cannot call `get_model_type()` outside of a '
'`model_type_scope()` or `run_with_all_model_types` '
'decorator.')
return _thread_local_data.model_type
def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None):
model = models.Sequential()
if input_dim:
model.add(layers.Dense(num_hidden, activation='relu', input_dim=input_dim))
else:
model.add(layers.Dense(num_hidden, activation='relu'))
activation = 'sigmoid' if num_classes == 1 else 'softmax'
model.add(layers.Dense(num_classes, activation=activation))
return model
def get_small_functional_mlp(num_hidden, num_classes, input_dim):
inputs = layers.Input(shape=(input_dim,))
outputs = layers.Dense(num_hidden, activation='relu')(inputs)
activation = 'sigmoid' if num_classes == 1 else 'softmax'
outputs = layers.Dense(num_classes, activation=activation)(outputs)
return models.Model(inputs, outputs)
class SmallSubclassMLP(models.Model):
"""A subclass model based small MLP."""
def __init__(self,
num_hidden,
num_classes,
use_bn=False,
use_dp=False,
**kwargs):
super(SmallSubclassMLP, self).__init__(name='test_model', **kwargs)
self.use_bn = use_bn
self.use_dp = use_dp
self.layer_a = layers.Dense(num_hidden, activation='relu')
activation = 'sigmoid' if num_classes == 1 else 'softmax'
self.layer_b = layers.Dense(num_classes, activation=activation)
if self.use_dp:
self.dp = layers.Dropout(0.5)
if self.use_bn:
self.bn = layers.BatchNormalization(axis=-1)
def call(self, inputs, **kwargs):
x = self.layer_a(inputs)
if self.use_dp:
x = self.dp(x)
if self.use_bn:
x = self.bn(x)
return self.layer_b(x)
class _SmallSubclassMLPCustomBuild(models.Model):
"""A subclass model small MLP that uses a custom build method."""
def __init__(self, num_hidden, num_classes):
super(_SmallSubclassMLPCustomBuild, self).__init__()
self.layer_a = None
self.layer_b = None
self.num_hidden = num_hidden
self.num_classes = num_classes
def build(self, input_shape):
self.layer_a = layers.Dense(self.num_hidden, activation='relu')
activation = 'sigmoid' if self.num_classes == 1 else 'softmax'
self.layer_b = layers.Dense(self.num_classes, activation=activation)
def call(self, inputs, **kwargs):
x = self.layer_a(inputs)
return self.layer_b(x)
def get_small_subclass_mlp(num_hidden, num_classes):
return SmallSubclassMLP(num_hidden, num_classes)
def get_small_subclass_mlp_with_custom_build(num_hidden, num_classes):
return _SmallSubclassMLPCustomBuild(num_hidden, num_classes)
def get_small_mlp(num_hidden, num_classes, input_dim):
"""Get a small mlp of the model type specified by `get_model_type`."""
model_type = get_model_type()
if model_type == 'subclass':
return get_small_subclass_mlp(num_hidden, num_classes)
if model_type == 'subclass_custom_build':
return get_small_subclass_mlp_with_custom_build(num_hidden, num_classes)
if model_type == 'sequential':
return get_small_sequential_mlp(num_hidden, num_classes, input_dim)
if model_type == 'functional':
return get_small_functional_mlp(num_hidden, num_classes, input_dim)
raise ValueError('Unknown model type {}'.format(model_type))
class _SubclassModel(models.Model):
"""A Keras subclass model."""
def __init__(self, model_layers, *args, **kwargs):
"""Instantiate a model.
Args:
model_layers: a list of layers to be added to the model.
*args: Model's args
**kwargs: Model's keyword args, at most one of input_tensor -> the input
tensor required for ragged/sparse input.
"""
inputs = kwargs.pop('input_tensor', None)
super(_SubclassModel, self).__init__(*args, **kwargs)
# Note that clone and build doesn't support lists of layers in subclassed
# models. Adding each layer directly here.
for i, layer in enumerate(model_layers):
setattr(self, self._layer_name_for_i(i), layer)
self.num_layers = len(model_layers)
if inputs is not None:
self._set_inputs(inputs)
def _layer_name_for_i(self, i):
return 'layer{}'.format(i)
def call(self, inputs, **kwargs):
x = inputs
for i in range(self.num_layers):
layer = getattr(self, self._layer_name_for_i(i))
x = layer(x)
return x
class _SubclassModelCustomBuild(models.Model):
"""A Keras subclass model that uses a custom build method."""
def __init__(self, layer_generating_func, *args, **kwargs):
super(_SubclassModelCustomBuild, self).__init__(*args, **kwargs)
self.all_layers = None
self._layer_generating_func = layer_generating_func
def build(self, input_shape):
model_layers = []
for layer in self._layer_generating_func():
model_layers.append(layer)
self.all_layers = model_layers
def call(self, inputs, **kwargs):
x = inputs
for layer in self.all_layers:
x = layer(x)
return x
def get_model_from_layers(model_layers,
input_shape=None,
input_dtype=None,
name=None,
input_ragged=None,
input_sparse=None,
model_type=None):
"""Builds a model from a sequence of layers.
Args:
model_layers: The layers used to build the network.
input_shape: Shape tuple of the input or 'TensorShape' instance.
input_dtype: Datatype of the input.
name: Name for the model.
input_ragged: Boolean, whether the input data is a ragged tensor.
input_sparse: Boolean, whether the input data is a sparse tensor.
model_type: One of "subclass", "subclass_custom_build", "sequential", or
"functional". When None, defaults to `get_model_type`.
Returns:
A Keras model.
"""
if model_type is None:
model_type = get_model_type()
if model_type == 'subclass':
inputs = None
if input_ragged or input_sparse:
inputs = layers.Input(
shape=input_shape,
dtype=input_dtype,
ragged=input_ragged,
sparse=input_sparse)
return _SubclassModel(model_layers, name=name, input_tensor=inputs)
if model_type == 'subclass_custom_build':
layer_generating_func = lambda: model_layers
return _SubclassModelCustomBuild(layer_generating_func, name=name)
if model_type == 'sequential':
model = models.Sequential(name=name)
if input_shape:
model.add(
layers.InputLayer(
input_shape=input_shape,
dtype=input_dtype,
ragged=input_ragged,
sparse=input_sparse))
for layer in model_layers:
model.add(layer)
return model
if model_type == 'functional':
if not input_shape:
raise ValueError('Cannot create a functional model from layers with no '
'input shape.')
inputs = layers.Input(
shape=input_shape,
dtype=input_dtype,
ragged=input_ragged,
sparse=input_sparse)
outputs = inputs
for layer in model_layers:
outputs = layer(outputs)
return models.Model(inputs, outputs, name=name)
raise ValueError('Unknown model type {}'.format(model_type))
class Bias(layers.Layer):
def build(self, input_shape):
self.bias = self.add_variable('bias', (1,), initializer='zeros')
def call(self, inputs):
return inputs + self.bias
class _MultiIOSubclassModel(models.Model):
"""Multi IO Keras subclass model."""
def __init__(self, branch_a, branch_b, shared_input_branch=None,
shared_output_branch=None, name=None):
super(_MultiIOSubclassModel, self).__init__(name=name)
self._shared_input_branch = shared_input_branch
self._branch_a = branch_a
self._branch_b = branch_b
self._shared_output_branch = shared_output_branch
def call(self, inputs, **kwargs):
if self._shared_input_branch:
for layer in self._shared_input_branch:
inputs = layer(inputs)
a = inputs
b = inputs
elif isinstance(inputs, dict):
a = inputs['input_1']
b = inputs['input_2']
else:
a, b = inputs
for layer in self._branch_a:
a = layer(a)
for layer in self._branch_b:
b = layer(b)
outs = [a, b]
if self._shared_output_branch:
for layer in self._shared_output_branch:
outs = layer(outs)
return outs
class _MultiIOSubclassModelCustomBuild(models.Model):
"""Multi IO Keras subclass model that uses a custom build method."""
def __init__(self, branch_a_func, branch_b_func,
shared_input_branch_func=None,
shared_output_branch_func=None):
super(_MultiIOSubclassModelCustomBuild, self).__init__()
self._shared_input_branch_func = shared_input_branch_func
self._branch_a_func = branch_a_func
self._branch_b_func = branch_b_func
self._shared_output_branch_func = shared_output_branch_func
self._shared_input_branch = None
self._branch_a = None
self._branch_b = None
self._shared_output_branch = None
def build(self, input_shape):
if self._shared_input_branch_func():
self._shared_input_branch = self._shared_input_branch_func()
self._branch_a = self._branch_a_func()
self._branch_b = self._branch_b_func()
if self._shared_output_branch_func():
self._shared_output_branch = self._shared_output_branch_func()
def call(self, inputs, **kwargs):
if self._shared_input_branch:
for layer in self._shared_input_branch:
inputs = layer(inputs)
a = inputs
b = inputs
else:
a, b = inputs
for layer in self._branch_a:
a = layer(a)
for layer in self._branch_b:
b = layer(b)
outs = a, b
if self._shared_output_branch:
for layer in self._shared_output_branch:
outs = layer(outs)
return outs
def get_multi_io_model(
branch_a,
branch_b,
shared_input_branch=None,
shared_output_branch=None):
"""Builds a multi-io model that contains two branches.
The produced model will be of the type specified by `get_model_type`.
To build a two-input, two-output model:
Specify a list of layers for branch a and branch b, but do not specify any
shared input branch or shared output branch. The resulting model will apply
each branch to a different input, to produce two outputs.
The first value in branch_a must be the Keras 'Input' layer for branch a,
and the first value in branch_b must be the Keras 'Input' layer for
branch b.
example usage:
```
branch_a = [Input(shape=(2,), name='a'), Dense(), Dense()]
branch_b = [Input(shape=(3,), name='b'), Dense(), Dense()]
model = get_multi_io_model(branch_a, branch_b)
```
To build a two-input, one-output model:
Specify a list of layers for branch a and branch b, and specify a
shared output branch. The resulting model will apply
each branch to a different input. It will then apply the shared output
branch to a tuple containing the intermediate outputs of each branch,
to produce a single output. The first layer in the shared_output_branch
must be able to merge a tuple of two tensors.
The first value in branch_a must be the Keras 'Input' layer for branch a,
and the first value in branch_b must be the Keras 'Input' layer for
branch b.
example usage:
```
input_branch_a = [Input(shape=(2,), name='a'), Dense(), Dense()]
input_branch_b = [Input(shape=(3,), name='b'), Dense(), Dense()]
shared_output_branch = [Concatenate(), Dense(), Dense()]
model = get_multi_io_model(input_branch_a, input_branch_b,
shared_output_branch=shared_output_branch)
```
To build a one-input, two-output model:
Specify a list of layers for branch a and branch b, and specify a
shared input branch. The resulting model will take one input, and apply
the shared input branch to it. It will then respectively apply each branch
to that intermediate result in parallel, to produce two outputs.
The first value in the shared_input_branch must be the Keras 'Input' layer
for the whole model. Branch a and branch b should not contain any Input
layers.
example usage:
```
shared_input_branch = [Input(shape=(2,), name='in'), Dense(), Dense()]
output_branch_a = [Dense(), Dense()]
output_branch_b = [Dense(), Dense()]
model = get_multi_io_model(output__branch_a, output_branch_b,
shared_input_branch=shared_input_branch)
```
Args:
branch_a: A sequence of layers for branch a of the model.
branch_b: A sequence of layers for branch b of the model.
shared_input_branch: An optional sequence of layers to apply to a single
input, before applying both branches to that intermediate result. If set,
the model will take only one input instead of two. Defaults to None.
shared_output_branch: An optional sequence of layers to merge the
intermediate results produced by branch a and branch b. If set,
the model will produce only one output instead of two. Defaults to None.
Returns:
A multi-io model of the type specified by `get_model_type`, specified
by the different branches.
"""
# Extract the functional inputs from the layer lists
if shared_input_branch:
inputs = shared_input_branch[0]
shared_input_branch = shared_input_branch[1:]
else:
inputs = branch_a[0], branch_b[0]
branch_a = branch_a[1:]
branch_b = branch_b[1:]
model_type = get_model_type()
if model_type == 'subclass':
return _MultiIOSubclassModel(branch_a, branch_b, shared_input_branch,
shared_output_branch)
if model_type == 'subclass_custom_build':
return _MultiIOSubclassModelCustomBuild((lambda: branch_a),
(lambda: branch_b),
(lambda: shared_input_branch),
(lambda: shared_output_branch))
if model_type == 'sequential':
raise ValueError('Cannot use `get_multi_io_model` to construct '
'sequential models')
if model_type == 'functional':
if shared_input_branch:
a_and_b = inputs
for layer in shared_input_branch:
a_and_b = layer(a_and_b)
a = a_and_b
b = a_and_b
else:
a, b = inputs
for layer in branch_a:
a = layer(a)
for layer in branch_b:
b = layer(b)
outputs = a, b
if shared_output_branch:
for layer in shared_output_branch:
outputs = layer(outputs)
return models.Model(inputs, outputs)
raise ValueError('Unknown model type {}'.format(model_type))
_V2_OPTIMIZER_MAP = {
'adadelta': adadelta_v2.Adadelta,
'adagrad': adagrad_v2.Adagrad,
'adam': adam_v2.Adam,
'adamax': adamax_v2.Adamax,
'nadam': nadam_v2.Nadam,
'rmsprop': rmsprop_v2.RMSprop,
'sgd': gradient_descent_v2.SGD
}
def get_v2_optimizer(name, **kwargs):
"""Get the v2 optimizer requested.
This is only necessary until v2 are the default, as we are testing in Eager,
and Eager + v1 optimizers fail tests. When we are in v2, the strings alone
should be sufficient, and this mapping can theoretically be removed.
Args:
name: string name of Keras v2 optimizer.
**kwargs: any kwargs to pass to the optimizer constructor.
Returns:
Initialized Keras v2 optimizer.
Raises:
ValueError: if an unknown name was passed.
"""
try:
return _V2_OPTIMIZER_MAP[name](**kwargs)
except KeyError:
raise ValueError(
'Could not find requested v2 optimizer: {}\nValid choices: {}'.format(
name, list(_V2_OPTIMIZER_MAP.keys())))
def get_expected_metric_variable_names(var_names, name_suffix=''):
"""Returns expected metric variable names given names and prefix/suffix."""
if tf2.enabled() or context.executing_eagerly():
# In V1 eager mode and V2 variable names are not made unique.
return [n + ':0' for n in var_names]
# In V1 graph mode variable names are made unique using a suffix.
return [n + name_suffix + ':0' for n in var_names]
def enable_v2_dtype_behavior(fn):
"""Decorator for enabling the layer V2 dtype behavior on a test."""
return _set_v2_dtype_behavior(fn, True)
def disable_v2_dtype_behavior(fn):
"""Decorator for disabling the layer V2 dtype behavior on a test."""
return _set_v2_dtype_behavior(fn, False)
def _set_v2_dtype_behavior(fn, enabled):
"""Returns version of 'fn' that runs with v2 dtype behavior on or off."""
@functools.wraps(fn)
def wrapper(*args, **kwargs):
v2_dtype_behavior = base_layer_utils.V2_DTYPE_BEHAVIOR
base_layer_utils.V2_DTYPE_BEHAVIOR = enabled
try:
return fn(*args, **kwargs)
finally:
base_layer_utils.V2_DTYPE_BEHAVIOR = v2_dtype_behavior
return tf_decorator.make_decorator(fn, wrapper)
@contextlib.contextmanager
def device(should_use_gpu):
"""Uses gpu when requested and available."""
if should_use_gpu and test_util.is_gpu_available():
dev = '/device:GPU:0'
else:
dev = '/device:CPU:0'
with ops.device(dev):
yield
@contextlib.contextmanager
def use_gpu():
"""Uses gpu when requested and available."""
with device(should_use_gpu=True):
yield
def for_all_test_methods(decorator, *args, **kwargs):
"""Generate class-level decorator from given method-level decorator.
It is expected for the given decorator to take some arguments and return
a method that is then called on the test method to produce a decorated
method.
Args:
decorator: The decorator to apply.
*args: Positional arguments
**kwargs: Keyword arguments
Returns: Function that will decorate a given classes test methods with the
decorator.
"""
def all_test_methods_impl(cls):
"""Apply decorator to all test methods in class."""
for name in dir(cls):
value = getattr(cls, name)
if callable(value) and name.startswith('test') and (name !=
'test_session'):
setattr(cls, name, decorator(*args, **kwargs)(value))
return cls
return all_test_methods_impl
# The description is just for documentation purposes.
def run_without_tensor_float_32(description): # pylint: disable=unused-argument
"""Execute test with TensorFloat-32 disabled.
While almost every real-world deep learning model runs fine with
TensorFloat-32, many tests use assertAllClose or similar methods.
TensorFloat-32 matmuls typically will cause such methods to fail with the
default tolerances.
Args:
description: A description used for documentation purposes, describing why
the test requires TensorFloat-32 to be disabled.
Returns:
Decorator which runs a test with TensorFloat-32 disabled.
"""
def decorator(f):
@functools.wraps(f)
def decorated(self, *args, **kwargs):
allowed = config.tensor_float_32_execution_enabled()
try:
config.enable_tensor_float_32_execution(False)
f(self, *args, **kwargs)