-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnp_utils.py
95 lines (79 loc) · 3 KB
/
np_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Numpy-related utilities."""
import numpy as np
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.utils.to_categorical')
def to_categorical(y, num_classes=None, dtype='float32'):
"""Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
Args:
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes. If `None`, this would be inferred
as the (largest number in `y`) + 1.
dtype: The data type expected by the input. Default: `'float32'`.
Returns:
A binary matrix representation of the input. The classes axis is placed
last.
Example:
>>> a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4)
>>> a = tf.constant(a, shape=[4, 4])
>>> print(a)
tf.Tensor(
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
>>> b = tf.constant([.9, .04, .03, .03,
... .3, .45, .15, .13,
... .04, .01, .94, .05,
... .12, .21, .5, .17],
... shape=[4, 4])
>>> loss = tf.keras.backend.categorical_crossentropy(a, b)
>>> print(np.around(loss, 5))
[0.10536 0.82807 0.1011 1.77196]
>>> loss = tf.keras.backend.categorical_crossentropy(a, a)
>>> print(np.around(loss, 5))
[0. 0. 0. 0.]
Raises:
Value Error: If input contains string value
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
return categorical
@keras_export('keras.utils.normalize')
def normalize(x, axis=-1, order=2):
"""Normalizes a Numpy array.
Args:
x: Numpy array to normalize.
axis: axis along which to normalize.
order: Normalization order (e.g. `order=2` for L2 norm).
Returns:
A normalized copy of the array.
"""
l2 = np.atleast_1d(np.linalg.norm(x, order, axis))
l2[l2 == 0] = 1
return x / np.expand_dims(l2, axis)