-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbatch_ops_test.py
635 lines (552 loc) · 23.6 KB
/
batch_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the currently experimental in-graph batch ops."""
import threading
import time
import numpy as np
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.framework.errors import InvalidArgumentError
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import batch_ops
from tensorflow.python.ops import gen_batch_ops
from tensorflow.python.ops import gen_functional_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import script_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def delayed_plus1(x):
"""Sleeps for 100ms then returns x+1."""
time.sleep(0.1)
return x + 1
@test_util.run_all_in_graph_and_eager_modes
class BatchOpsTest(test.TestCase):
"""Tests for batch_ops.{un,}batch."""
# Test for only non eager mode as batching in eager context as a functionality
# is TBD.
def testBasicBatch(self):
"""Tests that a single batched tensor executes together and only once."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
batched, index, _ = batch_ops.batch(
[inp], num_batch_threads=1, max_batch_size=2,
batch_timeout_micros=36000000, grad_timeout_micros=0,
batching_queue="")
thread_results = []
def worker():
thread_results.extend(
sess.run([batched, index], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([batched, index], feed_dict={inp: [2]})
worker_thread.join()
# At this point either the thread or the main did the batch and the other
# should have empty results.
if list(thread_results[0][0]):
batch_t = thread_results[0][0]
index_t = thread_results[1]
empty_b = main_results[0][0]
empty_m = main_results[1]
else:
batch_t = main_results[0][0]
index_t = main_results[1]
empty_b = thread_results[0][0]
empty_m = thread_results[1]
# Check that both the inputs made it out exactly once.
self.assertAllEqual(sorted(batch_t), (1, 2))
# Check that we get 2 rows in the index tensor.
self.assertEqual(len(index_t), 2)
# Check that the other ones are empty.
self.assertEqual(len(empty_b), 0)
self.assertEqual(len(empty_m), 0)
def testBatchWithPadding(self):
"""Test that batching with padding up to an allowed batch size works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[2])
batched, index, _ = batch_ops.batch(
[inp], num_batch_threads=1, max_batch_size=10,
batch_timeout_micros=100000, # 100ms
allowed_batch_sizes=[5, 10],
grad_timeout_micros=0, batching_queue="")
thread_results = []
def worker():
thread_results.extend(
sess.run([batched, index], feed_dict={inp: [1, 3]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([batched, index], feed_dict={inp: [2, 4]})
worker_thread.join()
# At this point either the thread or the main did the batch and the other
# should have empty results.
if list(thread_results[0][0]):
batch_t = thread_results[0][0]
else:
batch_t = main_results[0][0]
# Check that the batch tensor incorporates the padding.
self.assertEqual(len(batch_t), 5)
def testMultipleBatch(self):
"""Tests that multiple batched tensors execute together."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp0 = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
inp1 = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
batched, _, _ = batch_ops.batch(
[inp0, inp1],
num_batch_threads=1,
max_batch_size=2,
batch_timeout_micros=36000000,
grad_timeout_micros=0,
batching_queue="")
thread_results = []
def worker():
thread_results.extend(
sess.run([batched], feed_dict={inp0: [1],
inp1: [2]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([batched], feed_dict={inp0: [2], inp1: [3]})
worker_thread.join()
# At this point either the thread or the main did the batch and the other
# should have empty results.
if list(thread_results[0][0]):
batch_t = thread_results[0]
empty_t = main_results[0]
else:
batch_t = main_results[0]
empty_t = thread_results[0]
# Assert that the tensors were batched together.
self.assertAllEqual(sorted(batch_t[0]), [1, 2])
self.assertAllEqual(sorted(batch_t[1]), [2, 3])
self.assertAllEqual(empty_t[0], [])
self.assertAllEqual(empty_t[1], [])
def testIllegalBatchDifferentDim0Sizes(self):
"""Tests illegally feeding tensors with different dim0 sizes."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp0 = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
inp1 = array_ops.placeholder(dtype=dtypes.int32, shape=[2])
batched, index, _ = batch_ops.batch(
[inp0, inp1], num_batch_threads=1, max_batch_size=2,
batch_timeout_micros=0, grad_timeout_micros=0, batching_queue="")
with self.assertRaises(Exception) as raised:
_ = sess.run([batched, index], feed_dict={inp0: [0], inp1: [1, 2]})
self.assertGreater(
raised.exception.message.find("must have equal 0th-dimension size"),
0)
def testBasicUnbatch(self):
"""Tests that batch and unbatch work together."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
batched, index, id_t = batch_ops.batch(
[inp], num_batch_threads=1, max_batch_size=10,
batch_timeout_micros=100000, # 100ms
allowed_batch_sizes=[3, 10],
grad_timeout_micros=0, batching_queue="")
computation = batched[0] + 1
result = batch_ops.unbatch(computation, index, id_t,
timeout_micros=1000000, shared_name="unbatch")
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
def testBasicUnbatchDecorated(self):
"""Tests that the batch_function decorator works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
# TODO(apassos): Removing this line causes test flakiness! Ideally should
# be investigated.
default_inp = array_ops.placeholder_with_default(2, shape=[]) # pylint: disable=unused-variable
@batch_ops.batch_function(1, 10, 100000)
def computation(in_t):
self.assertTrue(in_t.shape is not None)
return in_t + 1
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
result = computation(inp)
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
def testUnbatchInvalidIdArg(self):
"""Tests that unbatch work together."""
if context.executing_eagerly():
batched_tensor = constant_op.constant(
value=np.random.random(size=(3, 3, 1)), dtype=dtypes.float64)
batched_index = constant_op.constant(
value=np.random.randint(0, 100, size=(3, 3, 1)), dtype=dtypes.int64)
arg_id = constant_op.constant(
value=np.random.randint(0, 100, size=(3, 3, 1)), dtype=dtypes.int64)
with self.assertRaisesRegex(errors.InvalidArgumentError,
"Input id should be scalar;"):
batch_ops.unbatch(
batched_tensor=batched_tensor,
batch_index=batched_index,
id=arg_id,
timeout_micros=50,
container="",
shared_name="")
def testBatchDecoratedWithCapturedInput(self):
"""Tests that the batch_function decorator works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
captured_inp0 = array_ops.placeholder_with_default(2., shape=[])
captured_inp1 = resource_variable_ops.ResourceVariable(3.)
with ops.device("/cpu:0"):
captured_inp2 = resource_variable_ops.ResourceVariable(4.)
@batch_ops.batch_function(1, 10, 100000)
def computation(in_t):
return in_t + captured_inp0 + captured_inp1 + captured_inp2
inp = array_ops.placeholder(dtype=dtypes.float32, shape=[1])
result = computation(inp)
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
sess.run(variables.global_variables_initializer())
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [10])
self.assertEqual(main_results[0], [11])
@test_util.disable_xla("DeviceIndex returns sentinel value with XLA")
def testBatchDecoratedGpu(self):
if context.executing_eagerly():
return
with self.cached_session() as sess:
@batch_ops.batch_function(1, 10, 100000)
def computation(in_t):
# index is 0 on CPU and 1 on GPU
index = gen_functional_ops.DeviceIndex(device_names=["CPU", "GPU"])
return in_t + math_ops.cast(index, dtypes.float32)
inp = array_ops.placeholder(dtype=dtypes.float32, shape=[1])
result = computation(inp)
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [10.]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [20.]})
worker_thread.join()
self.assertEqual(thread_results[0], [10 + test_util.is_gpu_available()])
self.assertEqual(main_results[0], [20 + test_util.is_gpu_available()])
def testParallelRunsWithCpuAndGpu(self):
# Run multiple instances of a batch function in parallel. This is a
# regression test: this used to fail because _Send nodes for one call would
# send the tensor to the _Recv node for a different call.
if context.executing_eagerly():
return
@batch_ops.batch_function(1, 2, 1)
def f(x):
with ops.device("/GPU:0"):
x = x + 1.
with ops.device("/CPU:0"):
return x + 1
num_calls = 10
placeholders = [array_ops.placeholder(dtypes.float32, shape=(1,))
for _ in range(num_calls)]
results = []
for p in placeholders:
result = f(p)
results.append(result)
inputs = [[float(i)] for i in range(num_calls)]
expected = [[float(i + 2)] for i in range(num_calls)]
with self.session() as sess:
outputs = sess.run(results, feed_dict=dict(zip(placeholders, inputs)))
self.assertAllEqual(outputs, expected)
def testSoftPlacement(self):
if context.executing_eagerly():
return
@batch_ops.batch_function(1, 10, 100000)
def computation(in_t):
with ops.device("/GPU:0"):
return in_t + 1.
inp = array_ops.placeholder(dtype=dtypes.float32, shape=[1])
result = computation(inp)
# With soft placement, the function will run even without a GPU
config = config_pb2.ConfigProto(allow_soft_placement=True)
with self.session(config=config) as sess:
sess.run([result], feed_dict={inp: [20.]})
# Without soft placement, the function fails without a GPU due to the
# addition explicitly being placed on the GPU
config.allow_soft_placement = False
with self.session(config=config) as sess:
if test_util.is_gpu_available():
sess.run([result], feed_dict={inp: [20.]})
else:
with self.assertRaisesRegex(InvalidArgumentError,
"Cannot assign a device for operation"):
sess.run([result], feed_dict={inp: [20.]})
def testBatchFunctionOp(self):
"""Tests that the batch_function op works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
@function.Defun(dtypes.int32)
def computation(in_t):
return in_t + 1
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
result = gen_batch_ops.batch_function(
[inp],
num_batch_threads=1,
max_batch_size=10,
batch_timeout_micros=100000,
Tout=[dtypes.int32],
f=computation,
captured_tensors=computation.captured_inputs)
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
def testBatchFunctionOpWithCapturedInput(self):
"""Tests that batch_function op works with captured input."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
captured_inp0 = array_ops.placeholder_with_default(2, shape=[])
captured_inp1 = array_ops.placeholder_with_default(1, shape=[])
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
@function.Defun(dtypes.int32)
def computation(inp):
return inp + captured_inp0 - captured_inp1
result = gen_batch_ops.batch_function(
num_batch_threads=1,
max_batch_size=10,
batch_timeout_micros=100000, # 100ms
allowed_batch_sizes=[3, 10],
batching_queue="",
f=computation,
in_tensors=[inp],
captured_tensors=computation.captured_inputs,
Tout=[o.type for o in computation.definition.signature.output_arg])
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [2]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
def testBatchFunctionOpWithInputError(self):
"""Tests that batch_function op works with error in the inputs."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
@function.Defun(dtypes.int32, dtypes.int32)
def computation(in0, in1):
return in0 + in1
result = gen_batch_ops.batch_function(
[inp], # computation actually expects 2 inputs.
num_batch_threads=1,
max_batch_size=10,
batch_timeout_micros=100000, # 100ms
batching_queue="",
f=computation,
captured_tensors=computation.captured_inputs,
Tout=[o.type for o in computation.definition.signature.output_arg])
with self.assertRaisesRegex(
InvalidArgumentError,
r"Function takes 2 argument\(s\) but 1 argument\(s\) were passed"):
sess.run([result], feed_dict={inp: [2]})
def testBatchFunctionOpWithLargeBatchSplitted(self):
"""Tests that the batch_function op works with large batch splitted."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
@function.Defun(dtypes.int32)
def computation(in_t):
return in_t + 3
inp = array_ops.placeholder(dtype=dtypes.int32)
result = gen_batch_ops.batch_function(
[inp],
num_batch_threads=2,
# enable_large_batch_splitting is True, so it's valid as long as
# max('allowed_batch_sizes') <= 'max_batch_size'.
allowed_batch_sizes=[1, 2],
max_batch_size=5,
batch_timeout_micros=100000, # 100ms
Tout=[dtypes.int32],
enable_large_batch_splitting=True,
f=computation,
captured_tensors=computation.captured_inputs)
thread1_results = []
thread2_results = []
# Input sizes of worker1 and main thread are larger than
# max(allowed_batch_sizes), while input size of worker2 is smaller.
def worker1():
thread1_results.extend(
sess.run([result], feed_dict={inp: [5, 6, 7, 8, 9]}))
worker_thread1 = threading.Thread(target=worker1)
worker_thread1.start()
def worker2():
thread2_results.extend(sess.run([result], feed_dict={inp: [10]}))
worker_thread2 = threading.Thread(target=worker2)
worker_thread2.start()
main_results = sess.run([result], feed_dict={inp: [2, 3, 4]})
worker_thread1.join()
worker_thread2.join()
self.assertTrue(
np.all(np.equal(thread2_results[0], np.array([13], dtype=np.int32))))
self.assertTrue(
np.all(
np.equal(thread1_results[0],
np.array([8, 9, 10, 11, 12], dtype=np.int32))))
self.assertTrue(
np.all(
np.equal(main_results[0], np.array([5, 6, 7], dtype=np.int32))))
def testBasicUnbatchDecoratedWithReshape(self):
"""Tests that the batch_function decorator works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
@batch_ops.batch_function(1, 10, 100000)
def computation(in_t):
return array_ops.reshape(in_t, [-1]) + 1
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1, 1])
result = computation(inp)
thread_results = []
def worker():
thread_results.extend(sess.run([result], feed_dict={inp: [[1]]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([result], feed_dict={inp: [[2]]})
worker_thread.join()
self.assertEqual(thread_results[0], [2])
self.assertEqual(main_results[0], [3])
def testUnbatchTimeout(self):
"""Tests that the unbatch timeout works."""
if context.executing_eagerly():
return
with self.cached_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
batched, index, id_t = batch_ops.batch(
[inp], num_batch_threads=1, max_batch_size=2,
batch_timeout_micros=36000000, grad_timeout_micros=0,
batching_queue="")
computation = batched[0] + 1
timeout_micros = 10
result = batch_ops.unbatch(computation, index, id_t, timeout_micros,
shared_name="shared_unbatch")
# Set up a parallel pipeline that delays the computation, but uses the
# same unbatch resource object as the non-delayed pipeline.
computation_delayed = script_ops.py_func(delayed_plus1,
[batched[0]],
dtypes.int32)
result_delayed = batch_ops.unbatch(computation_delayed,
index,
id_t,
timeout_micros,
shared_name="shared_unbatch")
thread_results = []
def worker():
# A first call using the non-delayed pipeline. The batcher will send an
# empty tensor along the non-delayed pipeline.
thread_results.extend(sess.run([result], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
time.sleep(0.1) # Ensure the thread's call starts first.
# A second call using the delayed pipeline. The batcher will send the
# batched tensor along the delayed pipeline, thus delaying the arrival of
# the batched tensor at the unbatch op, relative to the empty tensor.
#
# TODO(olston, apassos): Avoid relying on the order in which the batch op
# emits the empty tensor versus the batched one.
_ = sess.run([result_delayed], feed_dict={inp: [2]})
worker_thread.join()
# The thread's call should hit the timeout, and thus get 0 results.
self.assertEqual(len(thread_results), 0)
def testUnbatchGradInvalidId(self):
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
gen_batch_ops.unbatch_grad(
original_input=constant_op.constant([1]),
batch_index=constant_op.constant([
[0, 0, 0],
], dtype=dtypes.int64),
grad=constant_op.constant([
1,
]),
id=constant_op.constant([
1,
1,
], dtype=dtypes.int64)))
def testUnbatchGradInvalidBatchId(self):
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
gen_batch_ops.unbatch_grad(
original_input=constant_op.constant([1]),
batch_index=constant_op.constant([
[0, 0],
], dtype=dtypes.int64),
grad=constant_op.constant([
1,
]),
id=constant_op.constant([
1,
], dtype=dtypes.int64)))
def testUnbatchGradInvalidArgs(self):
original_input = random_ops.random_uniform(
shape=(3, 1), dtype=dtypes.float64, maxval=None)
batch_index = random_ops.random_uniform(
shape=(3, 1), dtype=dtypes.int64, maxval=65536)
grad = random_ops.random_uniform(
shape=(3, 1), dtype=dtypes.float64, maxval=None)
batch_id = random_ops.random_uniform(
shape=(3, 1), dtype=dtypes.int64, maxval=65536)
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
gen_batch_ops.unbatch_grad(
original_input=original_input,
batch_index=batch_index,
grad=grad,
id=batch_id,
container="",
shared_name="",
name=""))
if __name__ == "__main__":
test.main()