-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtpu_replication.py
691 lines (606 loc) · 27.9 KB
/
tpu_replication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file8 except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ======================================
"""OutsideCompilation, TPUReplicateContext, and supporting functions."""
from typing import Any, Callable, List, Optional, Text, Tuple, Union
from absl import logging
from tensorflow.core.framework import attr_value_pb2
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribution_strategy_context
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import errors
from tensorflow.python.framework import func_graph
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import variables
from tensorflow.python.tpu import device_assignment as device_assignment_lib
from tensorflow.python.tpu.ops import tpu_ops
from tensorflow.python.types import core as core_types
from tensorflow.python.util import compat
from tensorflow.python.util.tf_export import tf_export
_MAX_WARNING_LINES = 5
_TPU_REPLICATE_ATTR = "_tpu_replicate"
_OUTSIDE_COMPILATION_ATTR = "_xla_outside_compilation"
# Operations that indicate some error in the users graph, e.g. a placeholder
# that's introduced outside of the infeed.
_DENYLISTED_OPS = frozenset([
"Placeholder",
])
# XLA doesn't currently support reading of intermediate tensors, thus some ops
# are not supported.
_UNSUPPORTED_OPS = frozenset([
"AudioSummary",
"AudioSummaryV2",
"HistogramSummary",
"ImageSummary",
"MergeSummary",
"Print",
"ScalarSummary",
"TensorSummary",
"TensorSummaryV2",
])
def is_tpu_strategy(strategy: Any) -> bool:
is_tpu_strat = lambda k: k.__name__.startswith("TPUStrategy")
clz = strategy.__class__
return is_tpu_strat(clz) or any(map(is_tpu_strat, clz.__bases__))
def _enclosing_tpu_device_assignment(
) -> Optional[device_assignment_lib.DeviceAssignment]:
if not distribution_strategy_context.has_strategy():
return None
strategy = distribution_strategy_context.get_strategy()
if not is_tpu_strategy(strategy):
return None
return strategy.extended._device_assignment # pylint: disable=protected-access
class TPUReplicateContext(control_flow_ops.XLAControlFlowContext):
"""A `ControlFlowContext` for nodes inside a TPU computation.
The primary role of `TPUReplicateContext` is to mark operators inside a
tpu.replicate() computation with the attribute "_tpu_replicate=XYZ", where XYZ
is a unique name.
We use a `ControlFlowContext` to perform the annotation since it integrates
with Tensorflow constructs like ResourceVariables. For example, if a
`ResourceVariable` is constructed inside a tpu.replicate() block, the
`ResourceVariable` implementation can use
`with ops.control_dependencies(None)` to build the variable's definition
outside the replicated computation.
"""
def __init__(self, name: Text, num_replicas: int, pivot: ops.Operation):
"""Builds a new TPUReplicateContext.
Args:
name: a unique name for the context, used to populate the `_tpu_replicate`
attribute.
num_replicas: an integer that gives the number of replicas for the
computation.
pivot: a pivot node. Nodes in the TPUReplicateContext that do not have any
inputs will have a control dependency on the pivot node. This ensures
that nodes are correctly included in any enclosing control flow
contexts.
"""
super(TPUReplicateContext, self).__init__()
self._num_replicas = num_replicas
self._outer_device_function_stack = None
self._oc_dev_fn_stack = None
self._outside_compilation_cluster = None
self._outside_compilation_v2_context = None
self._outside_compilation_counter = 0
self._in_gradient_colocation = None
self._gradient_colocation_stack = []
self._host_compute_core = []
self._name = name
self._tpu_replicate_attr = attr_value_pb2.AttrValue(
s=compat.as_bytes(self._name)
)
self._unsupported_ops = []
self._pivot = pivot
self._replicated_vars = {}
def get_replicated_var_handle(self,
name: Text,
handle_id: Text,
vars_: Union[List[core_types.Tensor],
List[variables.Variable]],
is_mirrored: bool = False,
is_packed: bool = False) -> core_types.Tensor:
"""Returns a variable handle for replicated TPU variable 'var'.
This is a method used by an experimental replicated variable implementation
and is not intended as a public API.
Args:
name: The common name of the variable.
handle_id: Unique ID of the variable handle, used as the cache key.
vars_: The replicated TPU variables or handles.
is_mirrored: Whether the variables are mirrored, which guarantees the
values in each replica are always the same.
is_packed: Whether the replicated variables are packed into one variable.
Returns:
The handle of the TPU replicated input node.
"""
device_assignment = _enclosing_tpu_device_assignment()
# We don't need to put device assignment as part of the replicated_vars key
# because each TPUReplicateContext will only have one device assignment.
handle = self._replicated_vars.get(handle_id)
if handle is not None:
return handle
if device_assignment is not None and not is_packed:
# Find a variable copy for each replica in the device assignment.
# Note that the order of devices for replicas for the variable and the
# device assignment might not match.
job_name = pydev.DeviceSpec.from_string(vars_[0].device).job
devices_to_vars = {device_util.canonicalize(v.device): v for v in vars_}
replicated_vars = []
for replica_id in range(device_assignment.num_replicas):
for logical_core in range(device_assignment.num_cores_per_replica):
device = device_util.canonicalize(
device_assignment.tpu_device(
replica=replica_id, logical_core=logical_core, job=job_name))
if device in devices_to_vars:
replicated_vars.append(devices_to_vars[device])
break
else:
raise ValueError(
"Failed to find a variable on any device in replica {} for "
"current device assignment".format(replica_id)
)
else:
replicated_vars = vars_
# Builds a TPUReplicatedInput node for the variable, if one does not already
# exist. The TPUReplicatedInput node must belong to the enclosing
# control-flow scope of the TPUReplicateContext.
# TODO(phawkins): consider changing the contract of the TPU encapsulation
# so the TPUReplicatedInput nodes go inside the TPUReplicateContext scope
# instead.
_, graph = _enclosing_tpu_context_and_graph()
with graph.as_default():
# If replicated_vars are variables, get the handles. Note that this can be
# done inside TPUReplicateContext because replicated_vars.handle may
# create new ops.
if isinstance(replicated_vars[0], variables.Variable):
replicated_vars = [v.handle for v in replicated_vars]
# pylint: disable=protected-access
saved_context = graph._get_control_flow_context()
graph._set_control_flow_context(self.outer_context)
handle = tpu_ops.tpu_replicated_input(
replicated_vars,
name=name + "/handle",
is_mirrored_variable=is_mirrored,
is_packed=is_packed)
graph._set_control_flow_context(saved_context)
# pylint: enable=protected-access
self._replicated_vars[handle_id] = handle
return handle
def report_unsupported_operations(self) -> None:
if self._unsupported_ops:
op_str = "\n".join(
" %s (%s)" % (op.type, op.name) for op in
self._unsupported_ops[:_MAX_WARNING_LINES])
logging.warning("%d unsupported operations found: \n%s",
len(self._unsupported_ops), op_str)
if len(self._unsupported_ops
) > _MAX_WARNING_LINES:
logging.warning("... and %d more",
(len(self._unsupported_ops) - _MAX_WARNING_LINES))
def EnterGradientColocation(self, op: ops.Operation, gradient_uid: Text):
if op is not None:
if ops.get_default_graph()._control_flow_context is None: # pylint: disable=protected-access
# If we are in TF 2 functions (control flow V2 functions, or
# tf.function()), we need to attach _xla_outside_compilation attribute
# directly because we are not in TPUReplicateContext.
try:
outside_attr = op.get_attr(_OUTSIDE_COMPILATION_ATTR).decode("ascii")
except ValueError:
# The attr was not present: do nothing.
return
parts = outside_attr.split(".")
cluster = parts[0] + "." + gradient_uid
self._outside_compilation_v2_context = OutsideCompilationV2Context(
cluster)
self._outside_compilation_v2_context.Enter()
return
self._gradient_colocation_stack.append(op)
if not self._outside_compilation_cluster:
try:
outside_attr = op.get_attr(_OUTSIDE_COMPILATION_ATTR).decode("ascii")
if self._in_gradient_colocation:
raise NotImplementedError(
"Cannot nest gradient colocation operations outside compilation"
)
if gradient_uid == "__unsupported__":
raise NotImplementedError(
"No gradient_uid calling gradient within outside_compilation")
# When we take the gradient of an op X in an outside_compilation
# cluster C in a forward computation we would like to put the ops
# corresponding to the gradient of X into a new outside_compilation
# cluster C'. However, if we take the gradient of X twice, the second
# one should get yet another new outside_compilation cluster C''.
#
# The mechanism we adopt is to use a 'root_cluster' which is the
# cluster that X was in before we took gradients, and a 'gradient_uid'
# which is different for every invocation of gradients, and put the
# gradient of X in cluster 'root_cluster.gradient_uid'.
#
# When taking a gradient of a gradient, some ops will be colocated
# with Op in the forward pass (e.g., cluster root_cluster) and some in
# the backward pass (e.g., cluster root_cluster.initial_gradient_uid).
# We need all of the grad-of-grad ops to be in the same cluster to
# avoid cyclic dependencies between clusters. We adopt a heuristic
# that puts any op clustered with root_cluster.<xxx> in
# root_cluster.gradient_uid, even if xxx was initial_gradient_uid.
self._in_gradient_colocation = op
parts = outside_attr.split(".")
cluster = parts[0] + "." + gradient_uid
self._EnterOutsideCompilationScope(cluster=cluster)
except ValueError:
# The attr was not present: do nothing.
pass
def ExitGradientColocation(self, op: ops.Operation, gradient_uid: Text):
if op is not None:
if ops.get_default_graph()._control_flow_context is None: # pylint: disable=protected-access
# Inside a TF2 tf.function or control flow graph and `op` was not
# marked to be outside compiled.
assert self._outside_compilation_v2_context is None
return
if self._outside_compilation_v2_context is not None:
# Inside a TF2 tf.function or control flow graph and `op` was
# marked to be outside compiled.
self._outside_compilation_v2_context.Exit()
self._outside_compilation_v2_context = None
return
if not self._gradient_colocation_stack:
raise errors.InternalError(
op.node_def, op,
("Badly nested gradient colocation: "
+ f"empty stack when popping Op {op.name}")
)
last_op = self._gradient_colocation_stack.pop()
if op is last_op:
if op is self._in_gradient_colocation:
self._in_gradient_colocation = None
self._ExitOutsideCompilationScope()
else:
raise errors.InternalError(
op.node_def, op,
("Badly nested gradient colocation, " +
f"expected {last_op}, got {op.name}")
)
def _EnterOutsideCompilationScope(self, cluster: Optional[Text] = None):
class FakeOp(object):
"""A helper class to determine the current device.
Supports only the type and device set/get methods needed to run the
graph's _apply_device_function method.
"""
def __init__(self):
self._device = ""
@property
def type(self):
return "FakeOp"
@property
def device(self):
return self._device
def _set_device(self, device):
if isinstance(device, pydev.DeviceSpec):
self._device = device.to_string()
else:
self._device = device
def _set_device_from_string(self, device_str):
self._device = device_str
if self._outside_compilation_cluster:
raise NotImplementedError("Cannot nest outside_compilation clusters")
if cluster:
self._outside_compilation_cluster = cluster
else:
self._outside_compilation_cluster = str(self._outside_compilation_counter)
self._outside_compilation_counter += 1
graph = ops.get_default_graph()
fake_op = FakeOp()
graph._apply_device_functions(fake_op) # pylint: disable=protected-access
device = pydev.DeviceSpec.from_string(fake_op.device)
if (device.device_type == "TPU_REPLICATED_CORE" and
device.device_index is not None):
self._host_compute_core.append(self._outside_compilation_cluster + ":" +
str(device.device_index))
self._oc_dev_fn_stack = graph._device_function_stack # pylint: disable=protected-access
graph._device_function_stack = self._outer_device_function_stack # pylint: disable=protected-access
def _ExitOutsideCompilationScope(self):
if not self._outside_compilation_cluster:
raise ValueError(
"Attempted to exit outside_compilation scope when not in scope")
self._outside_compilation_cluster = None
graph = ops.get_default_graph()
graph._device_function_stack = self._oc_dev_fn_stack # pylint: disable=protected-access
def Enter(self) -> None:
if not self._outer_device_function_stack:
# Capture the device function stack at the time of first entry
# since that is the stack that will be used outside_compilation.
graph = ops.get_default_graph()
# pylint: disable=protected-access
self._outer_device_function_stack = graph._device_function_stack.copy()
# pylint: enable=protected-access
super(TPUReplicateContext, self).Enter()
def HostComputeCore(self) -> List[Text]:
return self._host_compute_core
def _RemoveExternalControlEdges(
self,
op: ops.Operation) -> Tuple[List[ops.Operation], List[ops.Operation]]:
"""Remove any external control dependency on this op."""
internal_control_inputs = []
external_control_inputs = []
for x in op.control_inputs:
# pylint: disable=protected-access
is_internal_op = False
ctxt = x._get_control_flow_context()
while ctxt is not None:
if ctxt == self:
is_internal_op = True
break
ctxt = ctxt._outer_context
if is_internal_op:
internal_control_inputs.append(x)
else:
external_control_inputs.append(x)
# pylint: enable=protected-access
# pylint: disable=protected-access
op._remove_all_control_inputs()
op._add_control_inputs(internal_control_inputs)
# pylint: enable=protected-access
return internal_control_inputs, external_control_inputs
def AddOp(self, op: ops.Operation) -> None:
# pylint: disable=protected-access
if op.type in _DENYLISTED_OPS:
logging.error(
"Operation of type %s (%s) is not supported on the TPU. "
"Execution will fail if this op is used in the graph. ", op.type,
op.name)
if op.type in _UNSUPPORTED_OPS:
self._unsupported_ops.append(op)
if any(x.dtype._is_ref_dtype for x in op.inputs):
raise NotImplementedError(
f"Non-resource Variables are not supported inside TPU computations "
f"(operator name: {op.name})")
# TensorFlowOpLayer may clone nodes that are in tpu.rewrite()s. It'll add
# the "_cloned" attribute and we should continue in that case.
if (_TPU_REPLICATE_ATTR in op.node_def.attr and
"_cloned" not in op.node_def.attr):
raise ValueError(f"TPU computations cannot be nested on op ({op})")
op._set_attr(_TPU_REPLICATE_ATTR, self._tpu_replicate_attr)
if self._outside_compilation_cluster:
op._set_attr(
_OUTSIDE_COMPILATION_ATTR,
attr_value_pb2.AttrValue(
s=compat.as_bytes(self._outside_compilation_cluster)))
if self._num_replicas > 1 or not self._outside_compilation_cluster:
# Prevent feeding or fetching anything that is being compiled,
# and any replicated outside_compilation Op.
op.graph.prevent_feeding(op)
op.graph.prevent_fetching(op)
# Remove any control edges from outer control flow contexts. These may cause
# mismatched frame errors.
(internal_control_inputs,
external_control_inputs) = self._RemoveExternalControlEdges(op)
if not op.inputs:
# Add a control edge from the control pivot to this op.
if not internal_control_inputs:
# pylint: disable=protected-access
op._add_control_input(self.GetControlPivot())
# pylint: enable=protected-access
else:
for index in range(len(op.inputs)):
x = op.inputs[index]
real_x = self.AddValue(x)
if real_x is not x:
op._update_input(index, real_x) # pylint: disable=protected-access
if external_control_inputs:
# Use an identity to pull control inputs as data inputs. Note that we
# ignore ops which don't have outputs. TODO(phawkins): fix that.
with ops.control_dependencies(None):
self.Enter()
external_control_inputs = [
array_ops.identity(x.outputs[0]).op
for x in external_control_inputs
if x.outputs
]
self.Exit()
# pylint: disable=protected-access
op._add_control_inputs(external_control_inputs)
# pylint: enable=protected-access
# Mark op's outputs as seen by this context and any outer contexts.
output_names = [x.name for x in op.outputs]
context = self
while context is not None:
# pylint: disable=protected-access
context._values.update(output_names)
context = context._outer_context
# pylint: enable=protected-access
if self._outer_context:
self._outer_context.AddInnerOp(op)
def AddValue(self, val: core_types.Tensor) -> core_types.Tensor:
"""Add `val` to the current context and its outer context recursively."""
if not self._outer_context:
return val
if val.name in self._values:
# Use the real value if it comes from outer context.
result = self._external_values.get(val.name)
return val if result is None else result
result = val
self._values.add(val.name)
if self._outer_context:
result = self._outer_context.AddValue(val)
self._values.add(result.name)
self._external_values[val.name] = result
return result
def AddInnerOp(self, op: ops.Operation):
self.AddOp(op)
if self._outer_context:
self._outer_context.AddInnerOp(op)
@property
def grad_state(self):
# Define the gradient loop state associated with the TPUReplicateContext to
# be None as the TPUReplicateContext does not get nested nor does the
# grad_state outside the TPUReplicateContext affect the graph inside so the
# grad_state should be as if this is the top-level gradient state.
return None
@property
def back_prop(self):
"""Forwards to the enclosing while context, if any."""
if self.GetWhileContext():
return self.GetWhileContext().back_prop
return False
def GetControlPivot(self) -> ops.Operation:
return self._pivot
def RequiresUniqueFunctionRetracing(self):
# More context: b/158152827. TPU stack uses the TPUReplicateContext to
# create replicated variable handles and cluster TPU computations, thus we
# always retrace a tf.function when the wrapped TPUReplicateContext changes.
return True
def _enclosing_tpu_context_and_graph() -> Tuple[Any, Any]:
"""Returns the TPUReplicateContext and its associated graph."""
graph = ops.get_default_graph()
while graph is not None:
# pylint: disable=protected-access
context_ = graph._get_control_flow_context()
# pylint: enable=protected-access
while context_ is not None:
if isinstance(context_, TPUReplicateContext):
return context_, graph
context_ = context_.outer_context
graph = getattr(graph, "outer_graph", None)
raise ValueError("get_replicated_var_handle() called without "
"TPUReplicateContext. This shouldn't happen. Please file "
"a bug.")
class OutsideCompilationV2Context(control_flow_ops.ControlFlowContext):
"""The context for outside compilation in Tensorflow 2.0.
Every op added in this context will be assigned an _xla_outside_compilation
attribute.
"""
def __init__(self, name: Text):
control_flow_ops.ControlFlowContext.__init__(self)
self._name = name
def AddOp(self, op: ops.Operation) -> None:
if self._outer_context:
self._outer_context.AddOp(op)
# pylint: disable=protected-access
op._set_attr("_xla_outside_compilation",
attr_value_pb2.AttrValue(s=compat.as_bytes(self._name)))
# pylint: enable=protected-access
def AddInnerOp(self, op: ops.Operation) -> None:
if self._outer_context:
self._outer_context.AddInnerOp(op)
# pylint: disable=protected-access
op._set_attr("_xla_outside_compilation",
attr_value_pb2.AttrValue(s=compat.as_bytes(self._name)))
# pylint: enable=protected-access
def to_control_flow_context_def(self, context_def, export_scope=None):
raise NotImplementedError
@tf_export(v1=["tpu.outside_compilation"])
def outside_compilation(computation: Callable[..., Any], *args,
**kwargs) -> Any:
"""Builds part of a computation outside any current TPU replicate scope.
`tf.tpu.outside_compilation()` is used to run ops in `computation` on CPU
instead of running on TPU. For example, users can run ops that are not
supported on TPU's (e.g. tf.summary.write()) by explicitly placing those
ops on CPU's. Below usage of outside compilation will place ops in
`computation_with_string_ops` on CPU.
Example usage:
```python
def computation_with_string_ops(x):
# strings types are not supported on TPU's and below ops must
# run on CPU instead.
output = tf.strings.format('1{}', x)
return tf.strings.to_number(output)
def tpu_computation():
# Expected output is 11.
output = tf.tpu.outside_compilation(computation_with_string_ops, 1)
```
Outside compilation should be called inside TPUReplicateContext. That is,
`tf.tpu.outside_compilation()` should be called inside a function that is
passed to `tpu.split_compile_and_replicate()` -- this is implied when
outside compilation is invoked inside a function passed to TPUStrategy
`run()`. If invoked outside of TPUReplicateContext,
then this simply returns the result of `computation`, and therefore,
would be a no-op. Note that outside compilation is different from
`tf.distribute.experimental.TPUStrategy.merge_call()` as logic in
outside compilation is replicated and executed separately for each
replica. On the other hand, `merge_call()` requires a `merge_fn`
to aggregate the inputs from different replicas and is executed only
once.
For variables placed in TPU device, which includes variables created inside
TPUStrategy scope, outside compilation logic must not include variable
read/write. For variables placed on host, which is the case when variables
created via TPUEstimator, variable read/write is only allowed if the variable
is not accessed by any other ops in the TPU computation. Variable read/write
from outside compilation cluster is not visible from TPU computation and
vice versa. Therefore, if outside compilation logic contains such host
variables read/write ops and if the variables are accessed by TPU
computation as well, then this may lead to deadlock.
Internally, `tf.tpu.outside_compilation()` adds outside compilation
attributes to all ops in `computation`. During later graph pass, these
ops with outside compilation attribute is extracted out and replicated
into a host-side graph. Inputs to this extract host-side graph is sent
from TPU computation graph to host graph via a pair of XlaSendToHost and
XlaRecvFromHost ops. Note that using `tf.tpu.outside_compilation()`
may result in tensor transfer between TPU and CPU, leading to non-trivial
performance impact.
Args:
computation: A Python function that builds the computation to place on the
host.
*args: the positional arguments for the computation.
**kwargs: the keyword arguments for the computation.
Returns:
The Tensors returned by computation.
"""
args = [] if args is None else args
graph = ops.get_default_graph()
# If we are in TF 2 functions (control flow V2 functions, or tf.function()),
# we need to attach _xla_outside_compilation attribute directly because we are
# not in TPUReplicateContext.
if isinstance(graph, func_graph.FuncGraph):
try:
tpu_context, _ = _enclosing_tpu_context_and_graph()
except ValueError:
logging.warning(
"Outside compilation attempted outside TPUReplicateContext "
"scope. As no enclosing TPUReplicateContext can be found, "
"returning the result of `computation` as is.")
return computation(*args, **kwargs)
# pylint: disable=protected-access
outside_compilation_name = str(tpu_context._outside_compilation_counter)
tpu_context._outside_compilation_counter = (
tpu_context._outside_compilation_counter + 1)
# pylint: enable=protected-access
outside_compilation_context = OutsideCompilationV2Context(
outside_compilation_name)
outside_compilation_context.Enter()
args = [] if args is None else args
retval = computation(*args, **kwargs)
outside_compilation_context.Exit()
return retval
# If we are in a TPUReplicateContext, signal that we are now
# outside_compilation
initial_context = graph._get_control_flow_context() # pylint: disable=protected-access
context = initial_context
while context:
if isinstance(context, TPUReplicateContext):
context._EnterOutsideCompilationScope() # pylint: disable=protected-access
context = context.outer_context
retval = computation(*args, **kwargs)
# If we are in a TPUReplicateContext, signal that we are no longer
# outside_compilation
final_context = graph._get_control_flow_context() # pylint: disable=protected-access
if initial_context is not final_context:
raise NotImplementedError(
"Control-flow context cannot be different at start and end of an "
"outside_compilation scope")
context = initial_context
while context:
if isinstance(context, TPUReplicateContext):
context._ExitOutsideCompilationScope() # pylint: disable=protected-access
context = context.outer_context
return retval