-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcheckpoint_ops.py
482 lines (430 loc) · 22.1 KB
/
checkpoint_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for generating and loading vocab remappings."""
import math
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_checkpoint_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
ops.NotDifferentiable("GenerateVocabRemapping")
ops.NotDifferentiable("LoadAndRemapMatrix")
def _load_and_remap_matrix(ckpt_path,
old_tensor_name,
new_row_vocab_offset,
num_rows_to_load,
new_col_vocab_size,
initializer,
old_row_vocab_size=-1,
old_row_vocab_file=None,
new_row_vocab_file=None,
old_col_vocab_file=None,
new_col_vocab_file=None,
num_row_oov_buckets=0,
num_col_oov_buckets=0,
max_rows_in_memory=-1):
"""Loads a 2-D (matrix) `Tensor` from checkpoint.
Generates 1D-remappings for rows and columns using the
`GenerateVocabRemapping` op, and initializes any anticipated values with the
provided initializer. Then, uses the `LoadAndRemapMatrix` op to create a
matrix that loads existing values from the checkpoint, while filling out
"missing" values with the newly initialized values. See
contrib/framework/ops/checkpoint_ops.cc for more information on the wrapped
functionality (LoadAndRemapMatrix). This wrapper can be used to perform only
row remapping or only col remapping. If only row remapping is desired,
{new,old}_col_vocab_file should be `None`, and vice versa for column
remapping.
NOTE: This only supports div-partitioning the vocabulary on the 1st dimension
(row axis) via `new_row_vocab_offset`.
Args:
ckpt_path: Path to the TensorFlow checkpoint (version 2, `TensorBundle`)
from which the old matrix `Tensor` will be loaded.
old_tensor_name: Name of the 2-D `Tensor` to load from checkpoint.
new_row_vocab_offset: A 0-indexed integer representing what line to
start reading at in the new row vocabulary. Used for partitioned
variables.
num_rows_to_load: Number of rows to load for the new vocabulary (note: to
support variable partitioning and partial loading, this does not need to
be the same as the number of entries in `new_row_vocab_file`).
new_col_vocab_size: Number of columns to load - should be the same as the
number of entries in `new_col_vocab_file`, since we don't support
partitioning along the column axis.
initializer: Callable initializer function that accepts a 1-D tensor as the
arg to specify the shape of the returned tensor. Used to initialize
missing values.
old_row_vocab_size: The number of entries to consider in the old vocabulary.
With the default value of -1, the entire old row vocabulary file will be
used. Otherwise, only the first `old_row_vocab_size` entries will be
considered for remapping.Must be smaller than the length of
`old_row_vocab_file`. NOTE: we do not provide an equivalent
`old_col_vocab_size` for classes.
old_row_vocab_file: A scalar `Tensor` of type `string` containing the
path to the old row vocabulary file. Can be None, which represents no
remapping on the row axis.
new_row_vocab_file: A scalar `Tensor` of type `string` containing the path
to the new row vocabulary file. Can be None, which represents no remapping
on the row axis - in which case, `new_row_vocab_offset` and
`num_rows_to_load` work under the assumption that the new row vocab is the
same as the old row vocab.
old_col_vocab_file: A scalar `Tensor` of type `string` containing the
path to the old column vocabulary file. Can be None, which represents no
remapping on the column axis.
new_col_vocab_file: A scalar `Tensor` of type `string` containing the path
to the new column vocabulary file. Can be None, which represents no
remapping on the column axis - in which case, `new_col_vocab_size` works
under the assumption that the new col vocab is the same as the old col
vocab.
num_row_oov_buckets: `int` specifying the number of out-of-vocabulary rows
to append. Must be >= 0.
num_col_oov_buckets: `int` specifying the number of out-of-vocabulary
columns to append. Must be >= 0.
max_rows_in_memory: `int` specifying the maximum number of rows to load from
the checkpoint at once. If less than or equal to 0, the entire matrix will
be loaded into memory. Setting this arg trades increased disk reads for
lower memory usage.
Returns:
A Tensor of shape `[num_rows_to_load + num_row_oov_buckets,
new_col_vocab_size + num_col_oov_buckets]`, with values loaded from the
specified tensor in the checkpoint, and any missing or OOV values
initialized with the given `initializer`.
Raises:
ValueError: If `num_row_oov_buckets` or `num_col_oov_buckets` < 0.
ValueError: If either `old_row_vocab_file` or `new_row_vocab_file` is
provided, while the other is not. Same for `old_col_vocab_file` and
`new_col_vocab_file`.
ValueError: If neither row vocabs or col vocabs are provided.
"""
if num_row_oov_buckets < 0:
raise ValueError("num_row_oov_buckets must be >= 0, but received %d" %
num_row_oov_buckets)
if num_col_oov_buckets < 0:
raise ValueError("num_col_oov_buckets must be >= 0, but received %d" %
num_col_oov_buckets)
if bool(old_row_vocab_file) != bool(new_row_vocab_file):
raise ValueError(
"old_row_vocab_file and new_row_vocab_file must both be specified or "
"left unspecified. old_row_vocab_file='{}', new_row_vocab_file='{}'".
format(old_row_vocab_file, new_row_vocab_file))
if bool(old_col_vocab_file) != bool(new_col_vocab_file):
raise ValueError(
"old_col_vocab_file and new_col_vocab_file must both be specified or "
"left unspecified. old_col_vocab_file='{}', new_col_vocab_file='{}'".
format(old_col_vocab_file, new_col_vocab_file))
remap_rows = new_row_vocab_file and old_row_vocab_file
remap_cols = new_col_vocab_file and old_col_vocab_file
if not (remap_rows or remap_cols):
raise ValueError(
"Must provide either row or column vocab files. If no remapping is "
"necessary, consider using `tf.contrib.framework.init_from_checkpoint` "
"instead.")
num_rows_present = num_rows_to_load
if remap_rows:
row_remapping, num_rows_present = (
gen_checkpoint_ops.generate_vocab_remapping(
new_vocab_file=new_row_vocab_file,
old_vocab_file=old_row_vocab_file,
new_vocab_offset=new_row_vocab_offset,
num_new_vocab=num_rows_to_load,
old_vocab_size=old_row_vocab_size))
else:
# Even when the rows are not being reordered, we still need to generate a
# remapping to account for initializing partitioned Variables (when
# new_row_vocab_offset is non-zero).
row_remapping = math_ops.range(
new_row_vocab_offset,
new_row_vocab_offset + num_rows_to_load,
dtype=dtypes.int64)
col_remapping = []
num_cols_present = new_col_vocab_size
if remap_cols:
col_remapping, num_cols_present = (
gen_checkpoint_ops.generate_vocab_remapping(
new_vocab_file=new_col_vocab_file,
old_vocab_file=old_col_vocab_file,
new_vocab_offset=0, # Offset is unused for cols (no partitioning).
num_new_vocab=new_col_vocab_size))
init_vals = initializer([
num_rows_to_load * new_col_vocab_size -
num_rows_present * num_cols_present, 1
])
return_tensor = gen_checkpoint_ops.load_and_remap_matrix(
ckpt_path=ckpt_path,
old_tensor_name=old_tensor_name,
row_remapping=row_remapping,
col_remapping=col_remapping,
initializing_values=init_vals,
num_rows=num_rows_to_load,
num_cols=new_col_vocab_size,
max_rows_in_memory=max_rows_in_memory)
# Add OOV row(s) and column(s).
if num_row_oov_buckets > 0:
init_row_oov_val = initializer([num_row_oov_buckets, new_col_vocab_size])
init_row_oov_val = ops.convert_to_tensor(init_row_oov_val)
return_tensor = array_ops.concat([return_tensor, init_row_oov_val], 0)
if num_col_oov_buckets > 0:
# We need to add any row OOV to the new column shape.
init_col_oov_val = initializer(
[num_rows_to_load + num_row_oov_buckets, num_col_oov_buckets])
init_col_oov_val = ops.convert_to_tensor(init_col_oov_val)
return_tensor = array_ops.concat([return_tensor, init_col_oov_val], 1)
return return_tensor
def _load_and_remap_matrix_initializer(ckpt_path,
old_tensor_name,
new_row_vocab_size,
new_col_vocab_size,
old_row_vocab_size=-1,
old_row_vocab_file=None,
new_row_vocab_file=None,
old_col_vocab_file=None,
new_col_vocab_file=None,
num_row_oov_buckets=0,
num_col_oov_buckets=0,
initializer=None,
max_rows_in_memory=-1):
r"""Returns a var initializer for loading and remapping a 2-D (matrix) tensor.
The returned initializer loads a 2-D (matrix) `Tensor` with name
`old_tensor_name` from the checkpoint at `ckpt_path`. It will reorder the
rows/columns according to the specified vocab files and append additional
out-of-vocabulary rows/columns according to the number of OOV buckets.
The format of the file at the `{old,new}_{row,col}_vocab_file` path should be
a text file, with each line containing a single entity within the vocabulary.
Let the function `line_of(f, "x")` return the 0-indexed line number of the
entity "x" in file f, and the function `entity_at(f, i)` return the entity at
line i of file f. Then, row i of the new output matrix will be taken from row
`line_of(old_row_vocab_file, entity_at(new_row_vocab_file, i))` of the old
matrix. If any entity in `new_row_vocab_file` is not found in
`old_row_vocab_file`, that row is considered a "missing" row, and its values
will be initialized using the `initializer` arg. The same logic also applies
for the columns.
For example, assuming that:
* `old_row_vocab_file` contains "mercury\nvenus\nmars"
* `new_row_vocab_file` contains "venus\njupiter\nmercury"
* `old_col_vocab_file` contains "good\nbetter\nbest"
* `new_col_vocab_file` contains "good\nbest\nfantastic"
* `initializer` returns the natural numbers `[1, 2, 3, 4, ...]`
* `w(i, j)` represents the value from row i, column j of the old matrix
Then the new output matrix will look like:
`[[w(1, 0), w(1, 2), 1],
[2, 3, 4],
[w(0, 0), w(0, 2), 5]]`
If we further specify that:
* `num_row_oov_buckets` == 2
* `num_col_oov_buckets` == 1
Then the new output matrix will look like:
`[[w(1, 0), w(1, 2), 1, 12],
[2, 3, 4, 13],
[w(0, 0), w(0, 2), 5, 14],
[6, 7, 8, 15],
[9, 10, 11, 16]]`
If `{old,new}_row_vocab_file` are None, we assume that the old and new row
vocab files are the same, and no row remapping is done. If
`{old,new}_col_vocab_file` are None, we assume that the old and new column
vocab files are the same, and no column remapping is done.
The returned initializer only supports div-partitioning along the row axis. It
does not support partitioning along the column axis (as this is not common in
practice) or mod-partitioning.
NOTE: When this is used to warm-start variables, client code should use
`tf.lookup.index_table_from_tensor()` like
contrib/layers/python/layers/feature_column.py does, as opposed to
`tf.feature_to_id()` - in order to ensure the underlying lookup tables are the
same.
Args:
ckpt_path: Path to the TensorFlow checkpoint (version 2, `TensorBundle`)
from which the old matrix `Tensor` will be loaded.
old_tensor_name: Name of the 2-D `Tensor` to load from checkpoint.
new_row_vocab_size: `int` specifying the number of entries in
`new_row_vocab_file`. If no row remapping is needed (no row vocab
provided), this should be equal to the number of rows to load from the old
matrix (which can theoretically be smaller than the number of rows in the
old matrix).
new_col_vocab_size: `int` specifying the number of entries in
`new_col_vocab_file`. If no column remapping is needed (no column vocab
provided), this should be equal to the number of columns in the old
matrix.
old_row_vocab_size: The number of entries to consider in the old vocabulary.
With the default value of -1, the entire old row vocabulary file will be
used. Otherwise, only the first `old_row_vocab_size` entries will be
considered for remapping.Must be smaller than the length of
`old_row_vocab_file`. NOTE: we do not provide an equivalent
`old_col_vocab_size` for classes.
old_row_vocab_file: A scalar `Tensor` of type `string` containing the
path to the old row vocabulary file. Can be None, which represents no
remapping on the row axis.
new_row_vocab_file: A scalar `Tensor` of type `string` containing the path
to the new row vocabulary file. Can be None, which represents no remapping
on the row axis.
old_col_vocab_file: A scalar `Tensor` of type `string` containing the
path to the old column vocabulary file. Can be None, which represents no
remapping on the column axis.
new_col_vocab_file: A scalar `Tensor` of type `string` containing the path
to the new column vocabulary file. Can be None, which represents no
remapping on the column axis.
num_row_oov_buckets: `int` specifying the number of out-of-vocabulary rows
to append. Must be >= 0.
num_col_oov_buckets: `int` specifying the number of out-of-vocabulary
columns to append. Must be >= 0.
initializer: Initializer function to initialize missing values. Accepts a
1-D tensor as the arg to specify the shape of the returned tensor. If
`None`, defaults to using `zeros_initializer()`.
max_rows_in_memory: `int` specifying the maximum number of rows to load from
the checkpoint at once. If less than or equal to 0, the entire matrix will
be loaded into memory. Setting this arg trades increased disk reads for
lower memory usage.
Returns:
A variable initializer function that should be used to initialize a
(potentially partitioned) `Variable` whose complete shape is
`[new_row_vocab_size + num_row_oov_buckets, new_col_vocab_size +
num_col_oov_buckets]`.
Raises:
TypeError: If `initializer` is specified but not callable.
"""
if initializer is None:
# TODO(b/25671353): Consider using sqrt(6/(fan_in + fan_out)) instead, from
# Glorot and Bengio, 2010.
initializer = init_ops.zeros_initializer()
if not callable(initializer):
raise TypeError(
"initializer must be callable, instead of being {} of type {}.".format(
initializer, type(initializer)))
def _initializer(shape, dtype=dtypes.float32, partition_info=None):
"""Variable initializer.
Args:
shape: Shape of `Tensor` to return. Should include OOV on both axes.
dtype: Must be float32.
partition_info: variable_scope._PartitionInfo.
Returns:
`Tensor` of shape `shape`.
Raises:
TypeError: If `dtype` is anything other than float32.
ValueError: For shape mismatch upon invocation.
"""
# Sanity checks.
if dtype != dtypes.float32:
raise TypeError(
"Currently, only float32 is supported. Received dtype: {}".format(
dtype))
if len(shape) != 2:
raise ValueError("Expected 2-dim shape, but received: {}".format(shape))
if shape[0] <= 0:
raise ValueError(
"Expected 1st dim of shape to be > 0, but received shape: {}".format(
shape))
if shape[1] != (new_col_vocab_size + num_col_oov_buckets):
raise ValueError(
"Expected 2nd dim of shape to be new_col_vocab_size ({}) + "
"num_col_oov_buckets ({}) = {}, but received shape: {}".format(
new_col_vocab_size, num_col_oov_buckets,
new_col_vocab_size + num_col_oov_buckets, shape))
offset = 0
if partition_info is not None:
offset = partition_info.single_offset(shape)
if offset + shape[0] > new_row_vocab_size + num_row_oov_buckets:
raise ValueError(
"Trying to initialize {} additional rows after {} rows have already "
"been initialized, which would exceed expected total row count of "
"new_row_vocab_size ({}) + num_row_oov_buckets ({}) = {}.".format(
shape[0], offset, new_row_vocab_size, num_row_oov_buckets,
new_row_vocab_size + num_row_oov_buckets))
row_oov_buckets_to_use = min(shape[0],
max(0, offset + shape[0] - new_row_vocab_size))
num_rows_to_load = shape[0] - row_oov_buckets_to_use
# We may be operating on an OOV-only partition, in which case we newly
# initialize all rows of this partition.
if offset > new_row_vocab_size:
if shape[0] != row_oov_buckets_to_use:
raise ValueError(
"Partitioned variable offset is greater than new vocab size and "
"not operating on OOV-only partition.")
return initializer(shape)
return _load_and_remap_matrix(
ckpt_path=ckpt_path,
old_tensor_name=old_tensor_name,
new_row_vocab_offset=offset,
num_rows_to_load=num_rows_to_load,
new_col_vocab_size=new_col_vocab_size,
initializer=initializer,
old_row_vocab_size=old_row_vocab_size,
old_row_vocab_file=old_row_vocab_file,
new_row_vocab_file=new_row_vocab_file,
old_col_vocab_file=old_col_vocab_file,
new_col_vocab_file=new_col_vocab_file,
num_row_oov_buckets=row_oov_buckets_to_use,
num_col_oov_buckets=num_col_oov_buckets,
max_rows_in_memory=max_rows_in_memory)
return _initializer
def _load_embedding_initializer(ckpt_path,
embedding_tensor_name,
new_vocab_size,
embedding_dim,
old_vocab_file,
new_vocab_file,
old_vocab_size=-1,
num_oov_buckets=0,
initializer=None,
max_rows_in_memory=-1):
"""Returns a variable initializer for loading pre-trained embeddings.
Wrapper around `load_and_remap_matrix_initializer()` specialized for loading
embedding weights and remapping according to the provided vocab files. See
docs for `load_and_remap_matrix_initializer()` for more details.
NOTE: Only for use with div-partitioned variables / vocabularies.
Args:
ckpt_path: Path to the TensorFlow checkpoint (version 2, `TensorBundle`)
from which the old matrix `Tensor` will be loaded.
embedding_tensor_name: Name of the 2-D `Tensor` to load from checkpoint.
new_vocab_size: Number of entries in the new vocab.
embedding_dim: `int` specifying the dimension of the embedding vectors from
the checkpoint. Must match the number of columns in the old embedding
matrix.
old_vocab_file: A scalar `Tensor` of type `string` containing the
path to the old vocabulary file.
new_vocab_file: A scalar `Tensor` of type `string` containing the
path to the new vocabulary file.
old_vocab_size: The number of entries to consider in the old vocabulary.
With the default value of -1, the entire old row vocabulary file will be
used. Otherwise, only the first `old_vocab_size` entries will be
considered for remapping.Must be smaller than the length of
`old_row_vocab_file`.
num_oov_buckets: `int` specifying the number of out-of-vocabulary
buckets to use. Must be >= 0.
initializer: Initializer function that accepts a 1-D tensor as the arg to
specify the shape of the returned tensor. If `None`, defaults to using
`truncated_normal_initializer()`.
max_rows_in_memory: `int` specifying the maximum number of rows to load from
the checkpoint at once. If less than or equal to 0, the entire matrix will
be loaded into memory. Setting this arg trades increased disk reads for
lower memory usage.
Returns:
A variable initializer function.
"""
if initializer is None:
# TODO(b/25671353): This should be kept in sync with the stddev used by
# feature_column.py's _EmbeddingColumn.
initializer = init_ops.truncated_normal_initializer(
stddev=1.0 / math.sqrt(embedding_dim))
return _load_and_remap_matrix_initializer(
ckpt_path=ckpt_path,
old_tensor_name=embedding_tensor_name,
new_row_vocab_size=new_vocab_size,
new_col_vocab_size=embedding_dim,
old_row_vocab_size=old_vocab_size,
old_row_vocab_file=old_vocab_file,
new_row_vocab_file=new_vocab_file,
old_col_vocab_file=None,
new_col_vocab_file=None,
num_row_oov_buckets=num_oov_buckets,
num_col_oov_buckets=0,
initializer=initializer,
max_rows_in_memory=max_rows_in_memory)