-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimizer.py
1355 lines (1135 loc) · 52.7 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class for optimizers."""
# pylint: disable=g-bad-name
import abc
from tensorflow.python.distribute import distribute_utils
from tensorflow.python.distribute import distribution_strategy_context as distribute_ctx
from tensorflow.python.distribute import reduce_util as ds_reduce_util
from tensorflow.python.eager import backprop
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import indexed_slices
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gradients
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.trackable import base as trackable
from tensorflow.python.training import slot_creator
from tensorflow.python.util import nest
from tensorflow.python.util.tf_export import tf_export
def get_filtered_grad_fn(grad_fn):
# `distributed_context.join()` requires that its arguments are parallel
# across threads, and in particular that `grads_and_vars` has the same
# variables in the same order.
# When computing gradients in eager mode with multiple threads, you
# can get extra variables with a gradient of `None`. This happens when
# those variables are accessed in another thread during the gradient
# computation. To get a consistent set of variables, we filter out
# those with `None` gradients.
def filtered_grad_fn(*args, **kwargs):
return [(g, v) for g, v in grad_fn(*args, **kwargs) if g is not None]
return filtered_grad_fn
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = array_ops.unique(indices)
summed_values = math_ops.unsorted_segment_sum(
values, new_index_positions,
array_ops.shape(unique_indices)[0])
return (summed_values, unique_indices)
def _var_key(var):
"""Returns slot key for `var`."""
# pylint: disable=protected-access
var = distribute_utils.value_container(var)
if (distribute_utils.is_distributed_variable(var) and
not ops.executing_eagerly_outside_functions()):
return (var.graph, var._shared_name)
if hasattr(var, "op"):
return (var.op.graph, var.op.name)
return var._unique_id
# pylint: enable=protected-access
class _OptimizableVariable(metaclass=abc.ABCMeta):
"""Interface for abstracting over variables in the optimizers."""
@abc.abstractmethod
def target(self):
"""Returns the optimization target for this variable."""
raise NotImplementedError("Calling an abstract method.")
@abc.abstractmethod
def update_op(self, optimizer, g):
"""Returns the update ops for updating the variable."""
raise NotImplementedError("Calling an abstract method.")
class _RefVariableProcessor(_OptimizableVariable):
"""Processor for Variable."""
def __init__(self, v):
self._v = v
def __str__(self):
return "<_RefVariableProcessor(%s)>" % self._v
def target(self):
return self._v._ref() # pylint: disable=protected-access
def update_op(self, optimizer, g):
if isinstance(g, ops.Tensor):
update_op = optimizer._apply_dense(g, self._v) # pylint: disable=protected-access
if self._v.constraint is not None:
with ops.control_dependencies([update_op]):
return self._v.assign(self._v.constraint(self._v))
else:
return update_op
else:
assert isinstance(g, indexed_slices.IndexedSlices), (
"Gradient ", g, " is neither a tensor nor IndexedSlices.")
if self._v.constraint is not None:
raise RuntimeError(
"Cannot use a constraint function on a sparse variable.")
# pylint: disable=protected-access
return optimizer._apply_sparse_duplicate_indices(g, self._v)
class _DenseReadResourceVariableProcessor(_OptimizableVariable):
"""Processor for dense ResourceVariables."""
def __init__(self, v):
self._v = v
def target(self):
return self._v
def update_op(self, optimizer, g):
# pylint: disable=protected-access
update_op = optimizer._resource_apply_dense(g, self._v.op.inputs[0])
if self._v.constraint is not None:
with ops.control_dependencies([update_op]):
return self._v.assign(self._v.constraint(self._v))
else:
return update_op
class _DenseResourceVariableProcessor(_OptimizableVariable):
"""Processor for dense ResourceVariables."""
def __init__(self, v):
self._v = v
def target(self):
return self._v
def update_op(self, optimizer, g):
# pylint: disable=protected-access
if isinstance(g, indexed_slices.IndexedSlices):
if self._v.constraint is not None:
raise RuntimeError(
"Cannot use a constraint function on a sparse variable.")
return optimizer._resource_apply_sparse_duplicate_indices(
g.values, self._v, g.indices)
update_op = optimizer._resource_apply_dense(g, self._v)
if self._v.constraint is not None:
with ops.control_dependencies([update_op]):
return self._v.assign(self._v.constraint(self._v))
else:
return update_op
class _TensorProcessor(_OptimizableVariable):
"""Processor for ordinary Tensors.
Even though a Tensor can't really be updated, sometimes it is useful to
compute the gradients with respect to a Tensor using the optimizer. Updating
the Tensor is, of course, unsupported.
"""
def __init__(self, v):
self._v = v
def target(self):
return self._v
def update_op(self, optimizer, g):
raise NotImplementedError("Trying to update a Tensor ", self._v)
def _get_processor(v):
"""The processor of v."""
if context.executing_eagerly():
if isinstance(v, ops.Tensor):
return _TensorProcessor(v)
else:
return _DenseResourceVariableProcessor(v)
if resource_variable_ops.is_resource_variable(v) and not v._in_graph_mode: # pylint: disable=protected-access
# True if and only if `v` was initialized eagerly.
return _DenseResourceVariableProcessor(v)
if v.op.type == "VarHandleOp":
return _DenseResourceVariableProcessor(v)
if isinstance(v, variables.Variable):
return _RefVariableProcessor(v)
if isinstance(v, ops.Tensor):
return _TensorProcessor(v)
raise NotImplementedError("Trying to optimize unsupported type ", v)
@tf_export(v1=["train.Optimizer"])
class Optimizer(
# Optimizers inherit from Trackable rather than AutoTrackable
# since they do most of their dependency management themselves (slot
# variables are special-cased, and non-slot variables are keyed to graphs).
trackable.Trackable):
"""Base class for optimizers.
This class defines the API to add Ops to train a model. You never use this
class directly, but instead instantiate one of its subclasses such as
`GradientDescentOptimizer`, `AdagradOptimizer`, or `MomentumOptimizer`.
### Usage
```python
# Create an optimizer with the desired parameters.
opt = GradientDescentOptimizer(learning_rate=0.1)
# Add Ops to the graph to minimize a cost by updating a list of variables.
# "cost" is a Tensor, and the list of variables contains tf.Variable
# objects.
opt_op = opt.minimize(cost, var_list=<list of variables>)
```
In the training program you will just have to run the returned Op.
```python
# Execute opt_op to do one step of training:
opt_op.run()
```
### Processing gradients before applying them.
Calling `minimize()` takes care of both computing the gradients and
applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three steps:
1. Compute the gradients with `compute_gradients()`.
2. Process the gradients as you wish.
3. Apply the processed gradients with `apply_gradients()`.
Example:
```python
# Create an optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1)
# Compute the gradients for a list of variables.
grads_and_vars = opt.compute_gradients(loss, <list of variables>)
# grads_and_vars is a list of tuples (gradient, variable). Do whatever you
# need to the 'gradient' part, for example cap them, etc.
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]
# Ask the optimizer to apply the capped gradients.
opt.apply_gradients(capped_grads_and_vars)
```
### Gating Gradients
Both `minimize()` and `compute_gradients()` accept a `gate_gradients`
argument that controls the degree of parallelism during the application of
the gradients.
The possible values are: `GATE_NONE`, `GATE_OP`, and `GATE_GRAPH`.
<b>`GATE_NONE`</b>: Compute and apply gradients in parallel. This provides
the maximum parallelism in execution, at the cost of some non-reproducibility
in the results. For example the two gradients of `matmul` depend on the input
values: With `GATE_NONE` one of the gradients could be applied to one of the
inputs _before_ the other gradient is computed resulting in non-reproducible
results.
<b>`GATE_OP`</b>: For each Op, make sure all gradients are computed before
they are used. This prevents race conditions for Ops that generate gradients
for multiple inputs where the gradients depend on the inputs.
<b>`GATE_GRAPH`</b>: Make sure all gradients for all variables are computed
before any one of them is used. This provides the least parallelism but can
be useful if you want to process all gradients before applying any of them.
### Slots
Some optimizer subclasses, such as `MomentumOptimizer` and `AdagradOptimizer`
allocate and manage additional variables associated with the variables to
train. These are called <i>Slots</i>. Slots have names and you can ask the
optimizer for the names of the slots that it uses. Once you have a slot name
you can ask the optimizer for the variable it created to hold the slot value.
This can be useful if you want to log debug a training algorithm, report stats
about the slots, etc.
@compatibility(TF2)
`tf.compat.v1.train.Optimizer` can be used in eager mode and `tf.function`,
but it is not recommended. Please use the subclasses of
`tf.keras.optimizers.Optimizer` instead in TF2. Please see [Basic training
loops](https://www.tensorflow.org/guide/basic_training_loops) or
[Writing a training loop from scratch]
(https://www.tensorflow.org/guide/keras/writing_a_training_loop_from_scratch)
for examples.
If your TF1 code contains a `tf.compat.v1.train.Optimizer` symbol, whether it
is used with or without a `tf.estimator.Estimator`, you cannot simply replace
that with the corresponding `tf.keras.optimizers.Optimizer`s. To migrate to
TF2, it is advised the whole training program used with `Estimator` to be
migrated to Keras `Model.fit` based or TF2 custom training loops.
#### Structural Mapping to Native TF2
Before:
```python
sgd_op = tf.compat.v1.train.GradientDescentOptimizer(3.0)
opt_op = sgd_op.minimize(cost, global_step, [var0, var1])
opt_op.run(session=session)
```
After:
```python
sgd = tf.keras.optimizers.SGD(3.0)
sgd.minimize(cost_fn, [var0, var1])
```
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :-------------------- | :-------------- | :------------------------- |
| `use_locking` | Not supported | - |
| `name` | `name. ` | - |
#### Before & After Usage Example
Before:
>>> g = tf.compat.v1.Graph()
>>> with g.as_default():
... var0 = tf.compat.v1.Variable([1.0, 2.0])
... var1 = tf.compat.v1.Variable([3.0, 4.0])
... cost = 5 * var0 + 3 * var1
... global_step = tf.compat.v1.Variable(
... tf.compat.v1.zeros([], tf.compat.v1.int64), name='global_step')
... init_op = tf.compat.v1.initialize_all_variables()
... sgd_op = tf.compat.v1.train.GradientDescentOptimizer(3.0)
... opt_op = sgd_op.minimize(cost, global_step, [var0, var1])
>>> session = tf.compat.v1.Session(graph=g)
>>> session.run(init_op)
>>> opt_op.run(session=session)
>>> print(session.run(var0))
[-14. -13.]
After:
>>> var0 = tf.Variable([1.0, 2.0])
>>> var1 = tf.Variable([3.0, 4.0])
>>> cost_fn = lambda: 5 * var0 + 3 * var1
>>> sgd = tf.keras.optimizers.SGD(3.0)
>>> sgd.minimize(cost_fn, [var0, var1])
>>> print(var0.numpy())
[-14. -13.]
@end_compatibility
"""
# Values for gate_gradients.
GATE_NONE = 0
GATE_OP = 1
GATE_GRAPH = 2
def __init__(self, use_locking, name):
"""Create a new Optimizer.
This must be called by the constructors of subclasses.
Args:
use_locking: Bool. If True apply use locks to prevent concurrent updates
to variables.
name: A non-empty string. The name to use for accumulators created
for the optimizer.
Raises:
ValueError: If name is malformed.
"""
if not name:
raise ValueError("Must specify the optimizer name")
self._use_locking = use_locking
self._name = name
# Dictionary of slots.
# {slot_name :
# {_var_key(variable_to_train): slot_for_the_variable, ... },
# ... }
self._slots = {}
self._non_slot_dict = {}
# For implementing Trackable. Stores information about how to restore
# slot variables which have not yet been created
# (trackable._CheckpointPosition objects).
# {slot_name :
# {_var_key(variable_to_train): [checkpoint_position, ... ], ... },
# ... }
self._deferred_slot_restorations = {}
# TODO(isaprykin): When using a DistributionStrategy, and when an
# optimizer is created in each replica, it might be dangerous to
# rely on some Optimizer methods. When such methods are called on a
# per-replica optimizer, an exception needs to be thrown. We do
# allow creation per-replica optimizers however, because the
# compute_gradients()->apply_gradients() sequence is safe.
def get_name(self):
return self._name
def minimize(self, loss, global_step=None, var_list=None,
gate_gradients=GATE_OP, aggregation_method=None,
colocate_gradients_with_ops=False, name=None,
grad_loss=None):
"""Add operations to minimize `loss` by updating `var_list`.
This method simply combines calls `compute_gradients()` and
`apply_gradients()`. If you want to process the gradient before applying
them call `compute_gradients()` and `apply_gradients()` explicitly instead
of using this function.
Args:
loss: A `Tensor` containing the value to minimize.
global_step: Optional `Variable` to increment by one after the
variables have been updated.
var_list: Optional list or tuple of `Variable` objects to update to
minimize `loss`. Defaults to the list of variables collected in
the graph under the key `GraphKeys.TRAINABLE_VARIABLES`.
gate_gradients: How to gate the computation of gradients. Can be
`GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`.
aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class `AggregationMethod`.
colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.
name: Optional name for the returned operation.
grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`.
Returns:
An Operation that updates the variables in `var_list`. If `global_step`
was not `None`, that operation also increments `global_step`.
Raises:
ValueError: If some of the variables are not `Variable` objects.
@compatibility(eager)
When eager execution is enabled, `loss` should be a Python function that
takes no arguments and computes the value to be minimized. Minimization (and
gradient computation) is done with respect to the elements of `var_list` if
not None, else with respect to any trainable variables created during the
execution of the `loss` function. `gate_gradients`, `aggregation_method`,
`colocate_gradients_with_ops` and `grad_loss` are ignored when eager
execution is enabled.
@end_compatibility
"""
grads_and_vars = self.compute_gradients(
loss, var_list=var_list, gate_gradients=gate_gradients,
aggregation_method=aggregation_method,
colocate_gradients_with_ops=colocate_gradients_with_ops,
grad_loss=grad_loss)
vars_with_grad = [v for g, v in grads_and_vars if g is not None]
if not vars_with_grad:
raise ValueError(
"No gradients provided for any variable, check your graph for ops"
" that do not support gradients, between variables %s and loss %s." %
([str(v) for _, v in grads_and_vars], loss))
return self.apply_gradients(grads_and_vars, global_step=global_step,
name=name)
def compute_gradients(self, loss, var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
grad_loss=None):
"""Compute gradients of `loss` for the variables in `var_list`.
This is the first part of `minimize()`. It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable". Note that "gradient" can be a `Tensor`, an
`IndexedSlices`, or `None` if there is no gradient for the
given variable.
@compatibility(TF2)
`tf.keras.optimizers.Optimizer` in TF2 does not provide a
`compute_gradients` method, and you should use a `tf.GradientTape` to
obtain the gradients:
```python
@tf.function
def train step(inputs):
batch_data, labels = inputs
with tf.GradientTape() as tape:
predictions = model(batch_data, training=True)
loss = tf.keras.losses.CategoricalCrossentropy(
reduction=tf.keras.losses.Reduction.NONE)(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
```
Args:
loss: A Tensor containing the value to minimize or a callable taking
no arguments which returns the value to minimize. When eager execution
is enabled it must be a callable.
var_list: Optional list or tuple of `tf.Variable` to update to minimize
`loss`. Defaults to the list of variables collected in the graph
under the key `GraphKeys.TRAINABLE_VARIABLES`.
gate_gradients: How to gate the computation of gradients. Can be
`GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`.
aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class `AggregationMethod`.
colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.
grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be `None`.
Raises:
TypeError: If `var_list` contains anything else than `Variable` objects.
ValueError: If some arguments are invalid.
RuntimeError: If called with eager execution enabled and `loss` is
not callable.
@compatibility(eager)
When eager execution is enabled, `gate_gradients`, `aggregation_method`,
and `colocate_gradients_with_ops` are ignored.
@end_compatibility
"""
if callable(loss):
with backprop.GradientTape() as tape:
if var_list is not None:
tape.watch(var_list)
loss_value = loss()
# Scale loss if using a "mean" loss reduction and multiple replicas.
# Have to be careful to call distribute_utils.get_loss_reduction()
# *after* loss() is evaluated, so we know what loss reduction it uses.
# TODO(josh11b): Test that we handle weight decay in a reasonable way.
loss_value = self._scale_loss(loss_value)
if var_list is None:
var_list = tape.watched_variables()
# TODO(jhseu): Figure out why GradientTape's gradients don't require loss
# to be executed.
with ops.control_dependencies([loss_value]):
grads = tape.gradient(loss_value, var_list, grad_loss)
return list(zip(grads, var_list))
# Non-callable/Tensor loss case
if context.executing_eagerly():
raise RuntimeError(
"`loss` passed to Optimizer.compute_gradients should "
"be a function when eager execution is enabled.")
# Scale loss if using a "mean" loss reduction and multiple replicas.
loss = self._scale_loss(loss)
if gate_gradients not in [Optimizer.GATE_NONE, Optimizer.GATE_OP,
Optimizer.GATE_GRAPH]:
raise ValueError("gate_gradients must be one of: Optimizer.GATE_NONE, "
"Optimizer.GATE_OP, Optimizer.GATE_GRAPH. Not %s" %
gate_gradients)
self._assert_valid_dtypes([loss])
if grad_loss is not None:
self._assert_valid_dtypes([grad_loss])
if var_list is None:
var_list = (
variables.trainable_variables() +
ops.get_collection(ops.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
else:
var_list = nest.flatten(var_list)
# pylint: disable=protected-access
var_list += ops.get_collection(ops.GraphKeys._STREAMING_MODEL_PORTS)
# pylint: enable=protected-access
processors = [_get_processor(v) for v in var_list]
if not var_list:
raise ValueError("No variables to optimize.")
var_refs = [p.target() for p in processors]
grads = gradients.gradients(
loss, var_refs, grad_ys=grad_loss,
gate_gradients=(gate_gradients == Optimizer.GATE_OP),
aggregation_method=aggregation_method,
colocate_gradients_with_ops=colocate_gradients_with_ops)
if gate_gradients == Optimizer.GATE_GRAPH:
grads = control_flow_ops.tuple(grads)
grads_and_vars = list(zip(grads, var_list))
self._assert_valid_dtypes(
[v for g, v in grads_and_vars
if g is not None and v.dtype != dtypes.resource])
return grads_and_vars
@staticmethod
def _scale_loss(loss_value):
ops.get_default_graph()._is_loss_scaled_by_optimizer = False # pylint: disable=protected-access
if distribute_utils.get_loss_reduction() == ds_reduce_util.ReduceOp.MEAN:
num_replicas = distribute_ctx.get_strategy().num_replicas_in_sync
if num_replicas > 1:
loss_value *= (1. / num_replicas)
ops.get_default_graph()._is_loss_scaled_by_optimizer = True # pylint: disable=protected-access
return loss_value
def apply_gradients(
self,
grads_and_vars,
global_step=None,
name=None,
skip_gradients_aggregation=False,
):
"""Apply gradients to variables.
This is the second part of `minimize()`. It returns an `Operation` that
applies gradients.
@compatibility(TF2)
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :-------------------- | :-------------- | :------------------------- |
| `grads_and_vars` | `grads_and_vars`| - |
| `global_step` | Not supported. | Use `optimizer.iterations` |
| `name` | `name. ` | - |
Args:
grads_and_vars: List of (gradient, variable) pairs as returned by
`compute_gradients()`.
global_step: Optional `Variable` to increment by one after the variables
have been updated.
name: Optional name for the returned operation. Default to the name
passed to the `Optimizer` constructor.
skip_gradients_aggregation: If true, gradients aggregation will not be
performed inside optimizer. Usually this arg is set to True when you
write custom code aggregating gradients outside the optimizer.
Returns:
An `Operation` that applies the specified gradients. If `global_step`
was not None, that operation also increments `global_step`.
Raises:
TypeError: If `grads_and_vars` is malformed.
ValueError: If none of the variables have gradients.
RuntimeError: If you should use `_distributed_apply()` instead.
"""
# This is a default implementation of apply_gradients() that can be shared
# by most optimizers. It relies on the subclass implementing the following
# methods: _create_slots(), _prepare(), _apply_dense(), and _apply_sparse().
# TODO(isaprykin): Get rid of `has_strategy()` check by
# always calling _distributed_apply(), using the default distribution
# as needed.
if distribute_ctx.has_strategy() and not skip_gradients_aggregation:
# Handle DistributionStrategy case.
if distribute_ctx.in_cross_replica_context():
raise RuntimeError("Use `_distributed_apply()` instead of "
"`apply_gradients()` in a cross-replica context.")
grads_and_vars = get_filtered_grad_fn(lambda: grads_and_vars)()
return distribute_ctx.get_replica_context().merge_call(
self._distributed_apply, args=(grads_and_vars, global_step, name))
# No DistributionStrategy case.
grads_and_vars = tuple(grads_and_vars) # Make sure repeat iteration works.
if not grads_and_vars:
raise ValueError("No variables provided.")
converted_grads_and_vars = []
for g, v in grads_and_vars:
if g is not None:
try:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = indexed_slices.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError(
"Gradient must be convertible to a Tensor"
" or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, indexed_slices.IndexedSlices)):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
p = _get_processor(v)
converted_grads_and_vars.append((g, v, p))
converted_grads_and_vars = tuple(converted_grads_and_vars)
var_list = [v for g, v, _ in converted_grads_and_vars if g is not None]
if not var_list:
raise ValueError("No gradients provided for any variable: %s." %
([str(v) for _, v, _ in converted_grads_and_vars],))
with ops.init_scope():
self._create_slots(var_list)
update_ops = []
with ops.name_scope(name, self._name, skip_on_eager=False) as name:
self._prepare()
for grad, var, processor in converted_grads_and_vars:
if grad is None:
continue
# We colocate all ops created in _apply_dense or _apply_sparse
# on the same device as the variable.
# TODO(apassos): figure out how to get the variable name here.
if (context.executing_eagerly() or
resource_variable_ops.is_resource_variable(var)
and not var._in_graph_mode): # pylint: disable=protected-access
scope_name = ""
else:
scope_name = var.op.name
with ops.name_scope(
"update_" + scope_name,
skip_on_eager=False), ops.colocate_with(var):
update_ops.append(processor.update_op(self, grad))
if global_step is None:
apply_updates = self._finish(update_ops, name)
else:
with ops.control_dependencies([self._finish(update_ops, "update")]):
with ops.colocate_with(global_step):
if isinstance(
global_step, resource_variable_ops.BaseResourceVariable):
# TODO(apassos): the implicit read in assign_add is slow; consider
# making it less so.
apply_updates = resource_variable_ops.assign_add_variable_op(
global_step.handle,
ops.convert_to_tensor(1, dtype=global_step.dtype),
name=name)
else:
apply_updates = state_ops.assign_add(global_step, 1, name=name)
if not context.executing_eagerly():
if isinstance(apply_updates, ops.Tensor):
apply_updates = apply_updates.op
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
if apply_updates not in train_op:
train_op.append(apply_updates)
return apply_updates
def _distributed_apply(self,
distribution,
grads_and_vars,
global_step=None,
name=None):
"""A version of `apply_gradients` for cross-replica context.
This is a version of `apply_gradients()` for when you are using a
`DistributionStrategy` and are in a cross-replica context. If in a
replica context, use `apply_gradients()` as normal.
Args:
distribution: A `DistributionStrategy` object.
grads_and_vars: List of (gradient, variable) pairs as returned by
`compute_gradients()`, and then aggregated across replicas.
global_step: Optional (mirrored) `Variable` to increment by one
after the variables have been updated.
name: Optional name for the returned operation. Default to the
name passed to the `Optimizer` constructor.
Returns:
An `Operation` that applies the specified gradients across all
replicas. If `global_step` was not None, that operation also
increments `global_step`
"""
reduced_grads = distribution.extended.batch_reduce_to(
ds_reduce_util.ReduceOp.SUM, grads_and_vars)
var_list = [v for _, v in grads_and_vars]
grads_and_vars = zip(reduced_grads, var_list)
# Note that this is called in a cross-replica context.
with ops.init_scope():
self._create_slots(var_list)
def update(v, g):
"""Apply gradients to a replica variable."""
assert v is not None
try:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = indexed_slices.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError("Gradient must be convertible to a Tensor"
" or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, indexed_slices.IndexedSlices)):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
p = _get_processor(v)
if context.executing_eagerly() or (
resource_variable_ops.is_resource_variable(v) and
not v._in_graph_mode): # pylint: disable=protected-access
scope_name = v.name.split(":")[0]
else:
scope_name = v.op.name
# device_policy is set because non-mirrored tensors will be read in
# `update_op`. `_resource_apply_dense`, `lr_t`, `beta1_t` and `beta2_t`
# is an example.
with ops.name_scope("update_" + scope_name):
return p.update_op(self, g)
with ops.name_scope(name, self._name) as name:
self._prepare()
update_ops = [
op
for grad, var in grads_and_vars
for op in distribution.extended.update(
var, update, args=(grad,), group=False)
]
def finish(self, update_ops):
return self._finish(update_ops, "update")
non_slot_devices = distribution.extended.non_slot_devices(var_list)
finish_updates = distribution.extended.update_non_slot(
non_slot_devices, finish, args=(self, update_ops), group=False)
if global_step is None:
apply_updates = distribution.group(finish_updates, name=name)
else:
with ops.control_dependencies(finish_updates):
apply_updates = distribution.extended.update(
global_step, state_ops.assign_add, args=(1,),
kwargs={"name": name})
if not context.executing_eagerly():
if isinstance(apply_updates, ops.Tensor):
apply_updates = apply_updates.op
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
if apply_updates not in train_op:
train_op.append(apply_updates)
return apply_updates
def get_slot(self, var, name):
"""Return a slot named `name` created for `var` by the Optimizer.
Some `Optimizer` subclasses use additional variables. For example
`Momentum` and `Adagrad` use variables to accumulate updates. This method
gives access to these `Variable` objects if for some reason you need them.
Use `get_slot_names()` to get the list of slot names created by the
`Optimizer`.
Args:
var: A variable passed to `minimize()` or `apply_gradients()`.
name: A string.
Returns:
The `Variable` for the slot if it was created, `None` otherwise.
"""
named_slots = self._slots.get(name, None)
if not named_slots:
return None
slot = named_slots.get(_var_key(var), None)
if (distribute_utils.is_distributed_variable(slot) and
not distribute_utils.is_distributed_variable(var)):
# Make sure var and slot are either both DistributedVariable, or both
# per replica variables.
slot = slot._get_on_device_or_primary() # pylint: disable=protected-access
return slot
def get_slot_names(self):
"""Return a list of the names of slots created by the `Optimizer`.
See `get_slot()`.
Returns:
A list of strings.
"""
return sorted(self._slots.keys())
def variables(self):
"""A list of variables which encode the current state of `Optimizer`.
Includes slot variables and additional global variables created by the
optimizer in the current default graph.
Returns:
A list of variables.
"""
current_graph = ops.get_default_graph()
def _from_current_graph(variable):
if variable._in_graph_mode: # pylint: disable=protected-access
return variable.op.graph is current_graph
else:
# No variable.op in eager mode. We don't expect lots of eager graphs,
# but behavior should be consistent with graph mode.
return variable._graph_key == current_graph._graph_key # pylint: disable=protected-access
optimizer_variables = [v for v in self._non_slot_variables()
if _from_current_graph(v)]
for _, variable_dict in self._slots.items():
for _, slot_for_variable in variable_dict.items():
if _from_current_graph(slot_for_variable):
optimizer_variables.append(slot_for_variable)
# Sort variables by name so that the return is deterministic.
return sorted(optimizer_variables, key=lambda v: v.name)
def _create_non_slot_variable(self, initial_value, name, colocate_with):
"""Add an extra variable, not associated with a slot."""
# Recommendation: Use OptimizerV2 if your optimizer uses non-slot variables.
eager = ops.executing_eagerly_outside_functions()
graph = None if eager else colocate_with.graph
key = (name, graph)
v = self._non_slot_dict.get(key, None)
if v is None:
self._maybe_initialize_trackable()
distribution_strategy = distribute_ctx.get_strategy()
with distribution_strategy.extended.colocate_vars_with(colocate_with):
if eager:
restored_initial_value = self._preload_simple_restoration(
name=name)
if restored_initial_value is not None:
initial_value = restored_initial_value
v = variable_scope.variable(
initial_value, name=name, trainable=False,
use_resource=resource_variable_ops.is_resource_variable(
colocate_with))
# Restore this variable by name if necessary, but don't add a
# Trackable dependency. Optimizers return the current graph's
# non-slot variables from _checkpoint_dependencies explicitly rather
# than unconditionally adding dependencies (since there may be multiple
# non-slot variables with the same name in different graphs, trying to
# save all of them would result in errors).
self._handle_deferred_dependencies(name=name, trackable=v)
self._non_slot_dict[key] = v
return v
def _trackable_children(self,
save_type=trackable.SaveType.CHECKPOINT,
**kwargs):
"""From Trackable. Gather graph-specific non-slot variables to save."""
current_graph_non_slot_variables = {}
current_graph_key = ops.get_default_graph()._graph_key # pylint: disable=protected-access
for (name, _), variable_object in sorted(self._non_slot_dict.items(),
# Avoid comparing graphs
key=lambda item: item[0][0]):
# Skip checking for graph key for eager mode since there's only one graph.
# This is necessary because there are cases where _trackable_children() is
# called in a differenr thread from the main thread (e.g., async
# checkpoint) and hence the default graph key would be different.
if (context.executing_eagerly()
or variable_object._graph_key == current_graph_key): # pylint: disable=protected-access
current_graph_non_slot_variables[name] = variable_object
current_graph_non_slot_variables.update(
super()._trackable_children(save_type, **kwargs)
)
return current_graph_non_slot_variables
def _lookup_dependency(self, name):
"""From Trackable. Find a non-slot variable in the current graph."""
unconditional = super()._lookup_dependency(name)
if unconditional is not None:
return unconditional
graph = None if context.executing_eagerly() else ops.get_default_graph()
return self._get_non_slot_variable(name, graph=graph)
def _get_non_slot_variable(self, name, graph=None):
non_slot = self._non_slot_dict.get((name, graph), None)
if distribute_utils.value_container(non_slot) is not non_slot:
# This is a mirrored non-slot. In order to enable code like `_finish`
# to assign to a non-slot, return the current context replica.
return non_slot.get()
else:
return non_slot
def _non_slot_variables(self):
"""Additional variables created by the `Optimizer`.
Returns:
A list or tuple of variables.
"""
return self._non_slot_dict.values()
def _assert_valid_dtypes(self, tensors):
"""Asserts tensors are all valid types (see `_valid_dtypes`).
Args:
tensors: Tensors to check.
Raises:
ValueError: If any tensor is not a valid type.
"""
valid_dtypes = self._valid_dtypes()
for t in tensors:
dtype = t.dtype.base_dtype