The objective of this file is to provide examples to demonstrate how to use TF Lookup ops in TFLite.
Here is the supported status of TensorFlow Lookup ops.
TF Python lookup ops | Supported status | ||||
tf.lookup.StaticHashTable | Supported only with tensor initializers.
Supported mapping type: string → int64, int64 → string |
||||
tf.lookup.Hashtable | Supported only with tensor initializers.
Supported mapping type: string → int64, int64 → string |
||||
tf.lookup.index_to_string_table_from_tensor | Supported. | ||||
tf.lookup.index_table_from_tensor | Supported natively when num_oov_buckets=0 and dtype=dtypes.string.
For the oov concept, you will need a Flex delegate. |
||||
tf.lookup.StaticVocabularyTable | Supported but you will need a Flex delegate.
Use tf.index_table_from_tensor or tf.index_to_string_table_from_tensor instead if possible if you don’t want to use Flex delegate. |
||||
tf.lookup.experimental.DenseHashTable
tf.contrib.lookup.MutableHashTable tf.contrib.lookup.MutableDenseHashTable |
Not supported yet. | ||||
tf.lookup.IdTableWithHashBuckets | Supported but you need a Flex delegate. |
Here, you can find the Python sample code:
- Static hash table (string → int64)
int64_values = tf.constant([1, 2, 3], dtype=tf.int64)
string_values = tf.constant(['bar', 'foo', 'baz'], dtype=tf.string)
initializer = tf.lookup.KeyValueTensorInitializer(string_values, int64_values)
table = tf.lookup.StaticHashTable(initializer, 4)
with tf.control_dependencies([tf.initializers.tables_initializer()]):
input_string_tensor = tf.compat.v1.placeholder(tf.string, shape=[1])
out_int64_tensor = table.lookup(input_string_tensor)
- Static hash table, initialized from a file (string → int64)
with open('/tmp/vocab.file', 'r') as f:
words = f.read().splitlines()
string_values = tf.constant(words, dtype=tf.string)
initializer = tf.lookup.KeyValueTensorInitializer(string_values, int64_values)
table = tf.lookup.StaticHashTable(initializer, 4)
with tf.control_dependencies([tf.initializers.tables_initializer()]):
input_string_tensor = tf.placeholder(tf.string, shape=[1])
out_int64_tensor = table.lookup(input_string_tensor)
- Index table (string → int64)
UNK_ID = -1
vocab = tf.constant(["emerson", "lake", "palmer"])
vocab_table = tf.lookup.index_table_from_tensor(vocab, default_value=UNK_ID)
input_tensor = tf.compat.v1.placeholder(tf.string, shape=[5])
with tf.control_dependencies([tf.initializers.tables_initializer()]):
out_tensor = vocab_table.lookup(input_tensor)
- Index table, initialized from a file (string → int64)
with open('/tmp/vocab.file', 'r') as f:
words = f.read().splitlines()
UNK_ID = -1
vocab = tf.constant(words)
vocab_table = tf.lookup.index_table_from_tensor(vocab, default_value=UNK_ID)
input_tensor = tf.compat.v1.placeholder(tf.string, shape=[5])
with tf.control_dependencies([tf.initializers.tables_initializer()]):
out_tensor = vocab_table.lookup(input_tensor)
- Index to string table (int64 → string)
UNK_WORD = "unknown"
vocab = tf.constant(["emerson", "lake", "palmer"])
vocab_table = tf.lookup.index_to_string_table_from_tensor(vocab, default_value=UNK_WORD)
input_tensor = tf.compat.v1.placeholder(tf.int64, shape=[1])
with tf.control_dependencies([tf.initializers.tables_initializer()]):
out_tensor = vocab_table.lookup(input_tensor)
- Index to string table, initialized from a file (int64 → string)
with open('/tmp/vocab.file', 'r') as f:
words = f.read().splitlines()
UNK_WORD = "unknown"
vocab = tf.constant(words)
vocab_table = tf.lookup.index_to_string_table_from_tensor(vocab, default_value=UNK_WORD)
input_tensor = tf.compat.v1.placeholder(tf.int64, shape=[1])
with tf.control_dependencies([tf.initializers.tables_initializer()]):
out_tensor = vocab_table.lookup(input_tensor)
Currently, hashtable ops are now a part of the TFLite builtin op set. You don't need to add hashtable ops manually.