-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmirror_pad.cc
313 lines (278 loc) · 11.4 KB
/
mirror_pad.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <memory>
#include <vector>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/core/c/builtin_op_data.h"
#include "tensorflow/lite/core/c/common.h"
#include "tensorflow/lite/kernels/cpu_backend_context.h"
#include "tensorflow/lite/kernels/cpu_backend_threadpool.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace mirror_pad {
namespace {
// Nil value for paddingMode/offset.
const int kUnsetOffset = -1;
// Wrapper for params passed to the Eval<T> function.
template <typename T>
struct EvalData {
const TfLiteTensor* padding_matrix = nullptr;
const TfLiteIntArray* input_dims = nullptr;
// Holds number of elements at the nth dimension.
// value at last dimension = 1, at second to last = sizeof last dimension.
const std::vector<int>* output_dims_num_elements = nullptr;
const std::vector<int>* input_dims_num_elements = nullptr;
const T* input_data = nullptr;
int offset = kUnsetOffset;
T* output_data = nullptr;
int num_dims = 0;
};
// Helper method that fills the left and right pads.
template <typename T>
inline void GetPadding(const T* data, int offset, int64_t* left_pad,
int64_t* right_pad) {
*left_pad = static_cast<int64_t>(*(data + offset * 2));
*right_pad = static_cast<int64_t>(*(data + offset * 2 + 1));
}
inline void GetPadding(const TfLiteTensor* padding_matrix, int dimension,
int64_t* left_pad, int64_t* right_pad) {
switch (padding_matrix->type) {
case kTfLiteInt32:
GetPadding(padding_matrix->data.i32, dimension, left_pad, right_pad);
break;
case kTfLiteInt64:
GetPadding(padding_matrix->data.i64, dimension, left_pad, right_pad);
break;
default:
return;
}
}
// Returns the shape of the final output after padding.
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> GetPaddedOutputShape(
const TfLiteTensor* input, const TfLiteTensor* padding_matrix) {
const int input_dims = NumDimensions(input);
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape(
TfLiteIntArrayCreate(input_dims), TfLiteIntArrayFree);
int64_t left_pad = 0, right_pad = 0;
for (int i = 0; i < input_dims; ++i) {
GetPadding(padding_matrix, i, &left_pad, &right_pad);
shape->data[i] = SizeOfDimension(input, i) + left_pad + right_pad;
}
return shape;
}
// Given dimension index and the left/right padding.
// Returns the corresponding dimension in the input array.
inline int GetInputDimension(int padded_dimension, int left_pad, int right_pad,
int input_dim_size, int offset) {
if (padded_dimension < left_pad) {
const int original_ind = left_pad + offset - 1;
return original_ind - (std::min(padded_dimension, original_ind - offset));
}
padded_dimension -= left_pad;
if (padded_dimension >= input_dim_size) {
padded_dimension -= input_dim_size;
const int original_ind = input_dim_size - (1 + offset);
return original_ind - std::min(padded_dimension, original_ind);
}
return padded_dimension;
}
// Given and index in output array, returns the index of the value
// in input array.
template <typename T>
int GetFlatIndex(int index, EvalData<T>* eval_data) {
int flat_index = 0;
int64_t left_pad = 0, right_pad = 0, dimension_index, index_in_input;
for (int i = 0; i < eval_data->num_dims; ++i) {
switch (eval_data->padding_matrix->type) {
case kTfLiteInt32:
GetPadding(eval_data->padding_matrix->data.i32, i, &left_pad,
&right_pad);
break;
case kTfLiteInt64:
GetPadding(eval_data->padding_matrix->data.i64, i, &left_pad,
&right_pad);
break;
default:
break;
}
dimension_index = index / (*eval_data->output_dims_num_elements)[i];
index_in_input =
GetInputDimension(dimension_index, left_pad, right_pad,
eval_data->input_dims->data[i], eval_data->offset);
flat_index += index_in_input * (*eval_data->input_dims_num_elements)[i];
index %= (*eval_data->output_dims_num_elements)[i];
}
return flat_index;
}
template <typename T>
struct MirrorPadWorkerTask : cpu_backend_threadpool::Task {
MirrorPadWorkerTask(EvalData<T>* eval_data, int start, int end)
: eval_data(eval_data), start(start), end(end) {}
void Run() override {
auto* input_data = eval_data->input_data;
auto* output_data = eval_data->output_data;
for (int i = start; i < end; ++i) {
output_data[i] = input_data[GetFlatIndex(i, eval_data)];
}
}
private:
EvalData<T>* eval_data;
int start;
int end;
};
} // namespace
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
ruy::profiler::ScopeLabel label("MirrorPad");
const TfLiteTensor* input_tensor;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input_tensor));
const TfLiteTensor* padding_matrix;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &padding_matrix));
auto* params =
reinterpret_cast<TfLiteMirrorPaddingParams*>(node->builtin_data);
if (params == nullptr) {
return kTfLiteError;
}
const int input_dims = NumDimensions(input_tensor);
TfLiteTensor* output_tensor;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output_tensor));
if (IsDynamicTensor(output_tensor)) {
auto output_size = GetPaddedOutputShape(input_tensor, padding_matrix);
if (output_size == nullptr) {
return kTfLiteError;
}
TF_LITE_ENSURE_STATUS(
context->ResizeTensor(context, output_tensor, output_size.release()));
}
std::vector<int> output_dims_num_elements(input_dims, 1);
std::vector<int> input_dims_num_elements(input_dims, 1);
for (int i = input_dims - 2; i >= 0; i--) {
output_dims_num_elements[i] =
output_dims_num_elements[i + 1] * output_tensor->dims->data[i + 1];
input_dims_num_elements[i] =
input_dims_num_elements[i + 1] * input_tensor->dims->data[i + 1];
}
const int offset =
params->mode != TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect ? 0
: 1;
CpuBackendContext* cpu_backend_context =
CpuBackendContext::GetFromContext(context);
const int thread_count = cpu_backend_context->max_num_threads();
TfLiteStatus status = kTfLiteOk;
const int output_size = NumElements(output_tensor);
#define TF_LITE_MIRROR_PAD(type) \
EvalData<type> eval_data; \
eval_data.input_data = GetTensorData<type>(input_tensor); \
eval_data.input_dims = input_tensor->dims; \
eval_data.input_dims = input_tensor->dims; \
eval_data.output_dims_num_elements = &output_dims_num_elements; \
eval_data.input_dims_num_elements = &input_dims_num_elements; \
eval_data.num_dims = input_dims; \
eval_data.offset = offset; \
eval_data.output_data = GetTensorData<type>(output_tensor); \
eval_data.padding_matrix = padding_matrix; \
std::vector<MirrorPadWorkerTask<type>> tasks; \
tasks.reserve(thread_count); \
int start = 0; \
for (int i = 0; i < thread_count; ++i) { \
int end = start + (output_size - start) / (thread_count - i); \
tasks.emplace_back(MirrorPadWorkerTask<type>(&eval_data, start, end)); \
start = end; \
} \
cpu_backend_threadpool::Execute(tasks.size(), tasks.data(), \
cpu_backend_context);
switch (output_tensor->type) {
case kTfLiteFloat32: {
TF_LITE_MIRROR_PAD(float);
break;
}
case kTfLiteInt32: {
TF_LITE_MIRROR_PAD(int32_t);
break;
}
case kTfLiteUInt8: {
TF_LITE_MIRROR_PAD(uint8_t);
break;
}
case kTfLiteInt8: {
TF_LITE_MIRROR_PAD(int8_t);
break;
}
case kTfLiteInt64: {
TF_LITE_MIRROR_PAD(int64_t);
break;
}
case kTfLiteInt16: {
TF_LITE_MIRROR_PAD(int16_t);
break;
}
default:
status = kTfLiteError;
break;
}
#undef TF_LITE_MIRROR_PAD
return status;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
return nullptr;
}
void Free(TfLiteContext* context, void* buffer) {}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input_tensor;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input_tensor));
const TfLiteTensor* padding_matrix;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &padding_matrix));
TfLiteTensor* output_tensor;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output_tensor));
TF_LITE_ENSURE_EQ(context, NumDimensions(padding_matrix), 2);
TF_LITE_ENSURE_EQ(context, SizeOfDimension(padding_matrix, 0),
NumDimensions(input_tensor));
if (input_tensor->type == kTfLiteUInt8 || input_tensor->type == kTfLiteInt8 ||
input_tensor->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, input_tensor->params.scale,
output_tensor->params.scale);
TF_LITE_ENSURE_EQ(context, input_tensor->params.zero_point,
output_tensor->params.zero_point);
}
if (input_tensor->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, input_tensor->params.zero_point, 0);
TF_LITE_ENSURE_EQ(context, output_tensor->params.zero_point, 0);
}
if (!IsConstantOrPersistentTensor(padding_matrix)) {
SetTensorToDynamic(output_tensor);
return kTfLiteOk;
}
// We have constant padding, so we can infer output size.
auto output_size = GetPaddedOutputShape(input_tensor, padding_matrix);
if (output_size == nullptr) {
return kTfLiteError;
}
return context->ResizeTensor(context, output_tensor, output_size.release());
}
} // namespace mirror_pad
TfLiteRegistration* Register_MIRROR_PAD() {
static TfLiteRegistration r = {mirror_pad::Init, mirror_pad::Free,
mirror_pad::Prepare, mirror_pad::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite