-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathquant_basic_lstm_test.cc
284 lines (238 loc) · 10 KB
/
quant_basic_lstm_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include <initializer_list>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class QuantizedLSTMOpModel : public MultiOpModel {
public:
QuantizedLSTMOpModel(int numBatches, int inputSize, float weightsScale,
int32_t weightsZeroPoint, int outputSize,
std::initializer_list<uint8_t> weights,
std::initializer_list<int32_t> biases,
// If true the LTSM node will be preceded by a noop
// one (add to 0)
bool prepend_noop) {
std::vector<uint32_t> inputs;
input_size_ = inputSize;
output_size_ = outputSize;
prepend_noop_ = prepend_noop;
std::vector<int> input_shape{numBatches, inputSize};
std::vector<int> output_shape{numBatches, outputSize};
std::vector<int> weight_shape{4 * outputSize, outputSize + inputSize};
std::vector<int> state_shape{numBatches, outputSize};
std::vector<int> bias_shape{4 * outputSize};
std::vector<int> lstm_inputs;
const TensorData input_tensor_data{
TensorType_UINT8, input_shape, 0.0f, 0.0f, 1. / 128., 128};
if (prepend_noop) {
zero_input_ = AddInput(input_tensor_data);
} else {
zero_input_ = 0;
}
input_ = AddInput(input_tensor_data);
prev_output_ = AddVariableInput(
{TensorType_UINT8, output_shape, 0.0f, 0.0f, 1. / 128., 128});
// Biases and Weights have to be constant in order to allow NNAPI
// delegation
weights_ = AddConstInput<uint8_t>({TensorType_UINT8, weight_shape, 0.0f,
0.0f, weightsScale, weightsZeroPoint},
weights);
biases_ = AddConstInput<int32_t>(
{TensorType_INT32, bias_shape, 0.0f, 0.0f, weightsScale / 128, 0},
biases);
prev_cell_state_ = AddVariableInput(
{TensorType_INT16, state_shape, 0.0f, 0.0f, 1. / 2048., 0});
sum_out_ = AddOutput(input_tensor_data);
output_ =
AddOutput({TensorType_UINT8, output_shape, 0.0f, 0.0f, 1. / 128., 128});
cell_state_out_ =
AddOutput({TensorType_INT16, state_shape, 0.0f, 0.0f, 1. / 2048., 0});
output_concat_temp_ =
AddOutput({TensorType_UINT8, output_shape, 0.0f, 0.0f, 1. / 128., 128});
output_activation_temp_ =
AddOutput({TensorType_INT16, output_shape, 0.0f, 0.0f, 1. / 128., 128});
if (prepend_noop) {
AddBuiltinOp(
BuiltinOperator_ADD, BuiltinOptions_AddOptions,
CreateAddOptions(builder_, ActivationFunctionType_NONE).Union(),
{zero_input_, input_}, {sum_out_});
lstm_inputs.push_back(sum_out_);
} else {
lstm_inputs.push_back(input_);
}
lstm_inputs.push_back(prev_output_);
lstm_inputs.push_back(weights_);
lstm_inputs.push_back(biases_);
lstm_inputs.push_back(prev_cell_state_);
std::vector<int> lstm_outputs{output_, cell_state_out_, output_concat_temp_,
output_activation_temp_};
AddBuiltinOp(BuiltinOperator_LSTM, BuiltinOptions_LSTMOptions,
CreateLSTMOptions(builder_, ActivationFunctionType_TANH, 0.0,
0.0, LSTMKernelType_BASIC)
.Union(),
lstm_inputs, lstm_outputs);
if (prepend_noop) {
BuildInterpreter({GetShape(input_), GetShape(zero_input_),
GetShape(prev_output_), GetShape(weights_),
GetShape(biases_), GetShape(prev_cell_state_)});
} else {
BuildInterpreter({GetShape(input_), GetShape(prev_output_),
GetShape(weights_), GetShape(biases_),
GetShape(prev_cell_state_)});
}
// init feedback inputs to zero
std::vector<int16_t> initial_state(GetTensorSize(cell_state_out_), 0);
PopulateTensor(prev_cell_state_, initial_state);
std::vector<uint8_t> initial_prev_output(GetTensorSize(output_), 0);
PopulateTensor(prev_output_, initial_prev_output);
}
int inputSize() { return input_size_; }
int outputSize() { return output_size_; }
void setInput(const std::vector<uint8_t>& input) {
PopulateTensor(input_, input);
if (prepend_noop_) {
std::vector<uint8_t> zero(GetTensorSize(zero_input_), 128);
PopulateTensor(zero_input_, zero);
}
}
std::vector<uint8_t> getOutput() { return ExtractVector<uint8_t>(output_); }
private:
// Inputs
int input_;
int weights_;
int biases_;
int prev_cell_state_;
int prev_output_;
// Outputs
int cell_state_out_;
int output_;
int output_concat_temp_;
int output_activation_temp_;
int input_size_;
int output_size_;
bool prepend_noop_;
int zero_input_;
int sum_out_;
};
class QuantizedLstmTest : public ::testing::Test,
public testing::WithParamInterface<bool> {
protected:
void VerifyGoldens(const std::vector<std::vector<uint8_t>>& input,
const std::vector<std::vector<uint8_t>>& output,
QuantizedLSTMOpModel* lstm) {
const int numBatches = input.size();
ASSERT_GT(numBatches, 0);
const int inputSize = lstm->inputSize();
ASSERT_GT(inputSize, 0);
const int inputSequenceSize = input[0].size() / inputSize;
ASSERT_GT(inputSequenceSize, 0);
for (int i = 0; i < inputSequenceSize; ++i) {
std::vector<uint8_t> inputStep;
for (int b = 0; b < numBatches; ++b) {
const uint8_t* batchStart = input[b].data() + i * inputSize;
const uint8_t* batchEnd = batchStart + inputSize;
inputStep.insert(inputStep.end(), batchStart, batchEnd);
}
lstm->setInput(inputStep);
ASSERT_EQ(lstm->Invoke(), kTfLiteOk);
const int outputSize = lstm->outputSize();
std::vector<float> expected;
for (int b = 0; b < numBatches; ++b) {
const uint8_t* goldenBatchStart = output[b].data() + i * outputSize;
const uint8_t* goldenBatchEnd = goldenBatchStart + outputSize;
expected.insert(expected.end(), goldenBatchStart, goldenBatchEnd);
}
EXPECT_THAT(lstm->getOutput(), ElementsAreArray(expected));
}
}
};
// Inputs and weights in this test are random and the test only checks that the
// outputs are equal to outputs obtained from running TF Lite version of
// quantized LSTM on the same inputs.
TEST_P(QuantizedLstmTest, BasicQuantizedLstmTest) {
const int numBatches = 2;
const int inputSize = 2;
const int outputSize = 4;
float weightsScale = 0.00408021;
int weightsZeroPoint = 100;
bool prepend_dummy_node = GetParam();
QuantizedLSTMOpModel lstm(
numBatches, inputSize, weightsScale, weightsZeroPoint, outputSize,
// This data are copied from QuantizedLSTMTest.cpp in NNAPI source code
// I have to recompose the weight matrix before passing it to the model
// recurrentToInputWeights inputToInputWeights
{254, 206, 77, 168, 146, 250, 71, 20, 215, 6, 235, 171, 223, 7, 118, 225,
10, 218, 59, 130, 174, 26, 171, 108,
// recurrentToCellWeights inputToCellWeights
172, 60, 205, 65, 133, 34, 14, 0, 140, 168, 29, 49, 240, 223, 133, 56,
206, 109, 142, 64, 246, 216, 54, 183,
// recurrentToForgetWeights inputToForgetWeights
137, 240, 103, 52, 24, 50, 68, 51, 237, 112, 132, 179, 0, 220, 89, 23,
158, 110, 69, 4, 207, 253, 3, 169,
// recurrentToOutputWeights inputToOutputWeights
106, 214, 67, 23, 195, 187, 59, 158, 45, 3, 11, 99, 119, 132, 49, 205,
109, 10, 129, 218, 11, 98, 218, 48},
// inputGateBias
{-7876, 13488, -726, 32839,
// cellGateBias
39481, 48624, 48976, -21419,
// forgetGateBias
9206, -46884, -11693, -38724,
// outputGateBias
-58999, -17050, -41852, -40538},
prepend_dummy_node);
// clang-format on
// LSTM input is stored as numBatches x (sequenceLength x inputSize) vector.
std::vector<std::vector<uint8_t>> lstmInput;
// clang-format off
lstmInput = {{154, 166,
166, 179,
141, 141},
{100, 200,
50, 150,
111, 222}};
// clang-format on
// LSTM output is stored as numBatches x (sequenceLength x outputSize) vector.
std::vector<std::vector<uint8_t>> lstmGoldenOutput;
/*
This is the output used in NNAPI's QuantizedLSTMTest.cpp
I get slightly different values that are consistent running with or
without acceleration
lstmGoldenOutput = {{136, 150, 140, 115,
140, 151, 146, 112,
139, 153, 146, 114},
{135, 152, 138, 112,
136, 156, 142, 112,
141, 154, 146, 108}};
*/
// clang-format off
lstmGoldenOutput = {{131, 152, 136, 109,
138, 150, 145, 111,
139, 152, 146, 113},
{131, 153, 135, 107,
134, 154, 140, 111,
140, 154, 145, 108}};
// clang-format on
VerifyGoldens(lstmInput, lstmGoldenOutput, &lstm);
}
INSTANTIATE_TEST_SUITE_P(QuantizedLstmTest, QuantizedLstmTest,
testing::Values(false, true));
} // namespace
} // namespace tflite