-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinterpreter_test.py
563 lines (465 loc) · 23.5 KB
/
interpreter_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TensorFlow Lite Python Interface: Sanity check."""
import ctypes
import io
import sys
from unittest import mock
import numpy as np
import tensorflow as tf
# Force loaded shared object symbols to be globally visible. This is needed so
# that the interpreter_wrapper, in one .so file, can see the test_registerer,
# in a different .so file. Note that this may already be set by default.
# pylint: disable=g-import-not-at-top
if hasattr(sys, 'setdlopenflags') and hasattr(sys, 'getdlopenflags'):
sys.setdlopenflags(sys.getdlopenflags() | ctypes.RTLD_GLOBAL)
from tensorflow.lite.python import interpreter as interpreter_wrapper
from tensorflow.lite.python.metrics import metrics
from tensorflow.lite.python.testdata import _pywrap_test_registerer as test_registerer
from tensorflow.python.framework import test_util
from tensorflow.python.platform import resource_loader
from tensorflow.python.platform import test
# pylint: enable=g-import-not-at-top
class InterpreterCustomOpsTest(test_util.TensorFlowTestCase):
def testRegistererByName(self):
interpreter = interpreter_wrapper.InterpreterWithCustomOps(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
custom_op_registerers=['TF_TestRegisterer'])
self.assertTrue(interpreter._safe_to_run())
self.assertEqual(test_registerer.get_num_test_registerer_calls(), 1)
def testRegistererByFunc(self):
interpreter = interpreter_wrapper.InterpreterWithCustomOps(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
custom_op_registerers=[test_registerer.TF_TestRegisterer])
self.assertTrue(interpreter._safe_to_run())
self.assertEqual(test_registerer.get_num_test_registerer_calls(), 1)
def testRegistererFailure(self):
bogus_name = 'CompletelyBogusRegistererName'
with self.assertRaisesRegex(
ValueError, 'Looking up symbol \'' + bogus_name + '\' failed'):
interpreter_wrapper.InterpreterWithCustomOps(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
custom_op_registerers=[bogus_name])
def testNoCustomOps(self):
interpreter = interpreter_wrapper.InterpreterWithCustomOps(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'))
self.assertTrue(interpreter._safe_to_run())
class InterpreterTest(test_util.TensorFlowTestCase):
def assertQuantizationParamsEqual(self, scales, zero_points,
quantized_dimension, params):
self.assertAllEqual(scales, params['scales'])
self.assertAllEqual(zero_points, params['zero_points'])
self.assertEqual(quantized_dimension, params['quantized_dimension'])
def testThreads_NegativeValue(self):
with self.assertRaisesRegex(ValueError, 'num_threads should >= 1'):
interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
num_threads=-1)
def testThreads_WrongType(self):
with self.assertRaisesRegex(ValueError,
'type of num_threads should be int'):
interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
num_threads=4.2)
def testNotSupportedOpResolverTypes(self):
with self.assertRaisesRegex(
ValueError, 'Unrecognized passed in op resolver type: test'):
interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
experimental_op_resolver_type='test')
def testFloatWithDifferentOpResolverTypes(self):
op_resolver_types = [
interpreter_wrapper.OpResolverType.BUILTIN,
interpreter_wrapper.OpResolverType.BUILTIN_REF,
interpreter_wrapper.OpResolverType.BUILTIN_WITHOUT_DEFAULT_DELEGATES
]
for op_resolver_type in op_resolver_types:
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
experimental_op_resolver_type=op_resolver_type)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('input', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 4] == input_details[0]['shape']).all())
self.assertEqual((0.0, 0), input_details[0]['quantization'])
self.assertQuantizationParamsEqual(
[], [], 0, input_details[0]['quantization_parameters'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('output', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 4] == output_details[0]['shape']).all())
self.assertEqual((0.0, 0), output_details[0]['quantization'])
self.assertQuantizationParamsEqual(
[], [], 0, output_details[0]['quantization_parameters'])
test_input = np.array([[1.0, 2.0, 3.0, 4.0]], dtype=np.float32)
expected_output = np.array([[4.0, 3.0, 2.0, 1.0]], dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], test_input)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
self.assertTrue((expected_output == output_data).all())
def testFloatWithTwoThreads(self):
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
num_threads=2)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
test_input = np.array([[1.0, 2.0, 3.0, 4.0]], dtype=np.float32)
expected_output = np.array([[4.0, 3.0, 2.0, 1.0]], dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], test_input)
interpreter.invoke()
output_details = interpreter.get_output_details()
output_data = interpreter.get_tensor(output_details[0]['index'])
self.assertTrue((expected_output == output_data).all())
def testUint8(self):
model_path = resource_loader.get_path_to_datafile(
'testdata/permute_uint8.tflite')
with io.open(model_path, 'rb') as model_file:
data = model_file.read()
interpreter = interpreter_wrapper.Interpreter(model_content=data)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('input', input_details[0]['name'])
self.assertEqual(np.uint8, input_details[0]['dtype'])
self.assertTrue(([1, 4] == input_details[0]['shape']).all())
self.assertEqual((1.0, 0), input_details[0]['quantization'])
self.assertQuantizationParamsEqual(
[1.0], [0], 0, input_details[0]['quantization_parameters'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('output', output_details[0]['name'])
self.assertEqual(np.uint8, output_details[0]['dtype'])
self.assertTrue(([1, 4] == output_details[0]['shape']).all())
self.assertEqual((1.0, 0), output_details[0]['quantization'])
self.assertQuantizationParamsEqual(
[1.0], [0], 0, output_details[0]['quantization_parameters'])
test_input = np.array([[1, 2, 3, 4]], dtype=np.uint8)
expected_output = np.array([[4, 3, 2, 1]], dtype=np.uint8)
interpreter.resize_tensor_input(input_details[0]['index'], test_input.shape)
interpreter.allocate_tensors()
interpreter.set_tensor(input_details[0]['index'], test_input)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
self.assertTrue((expected_output == output_data).all())
def testString(self):
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/gather_string.tflite'))
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(2, len(input_details))
self.assertEqual('input', input_details[0]['name'])
self.assertEqual(np.string_, input_details[0]['dtype'])
self.assertTrue(([10] == input_details[0]['shape']).all())
self.assertEqual((0.0, 0), input_details[0]['quantization'])
self.assertQuantizationParamsEqual(
[], [], 0, input_details[0]['quantization_parameters'])
self.assertEqual('indices', input_details[1]['name'])
self.assertEqual(np.int64, input_details[1]['dtype'])
self.assertTrue(([3] == input_details[1]['shape']).all())
self.assertEqual((0.0, 0), input_details[1]['quantization'])
self.assertQuantizationParamsEqual(
[], [], 0, input_details[1]['quantization_parameters'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('output', output_details[0]['name'])
self.assertEqual(np.string_, output_details[0]['dtype'])
self.assertTrue(([3] == output_details[0]['shape']).all())
self.assertEqual((0.0, 0), output_details[0]['quantization'])
self.assertQuantizationParamsEqual(
[], [], 0, output_details[0]['quantization_parameters'])
test_input = np.array([1, 2, 3], dtype=np.int64)
interpreter.set_tensor(input_details[1]['index'], test_input)
test_input = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
expected_output = np.array([b'b', b'c', b'd'])
interpreter.set_tensor(input_details[0]['index'], test_input)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
self.assertTrue((expected_output == output_data).all())
def testStringZeroDim(self):
data = b'abcd' + bytes(16)
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/gather_string_0d.tflite'))
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
interpreter.set_tensor(input_details[0]['index'], np.array(data))
test_input_tensor = interpreter.get_tensor(input_details[0]['index'])
self.assertEqual(len(data), len(test_input_tensor.item(0)))
def testPerChannelParams(self):
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile('testdata/pc_conv.bin'))
interpreter.allocate_tensors()
# Tensor index 1 is the weight.
weight_details = interpreter.get_tensor_details()[1]
qparams = weight_details['quantization_parameters']
# Ensure that we retrieve per channel quantization params correctly.
self.assertEqual(len(qparams['scales']), 128)
def testDenseTensorAccess(self):
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile('testdata/pc_conv.bin'))
interpreter.allocate_tensors()
weight_details = interpreter.get_tensor_details()[1]
s_params = weight_details['sparsity_parameters']
self.assertEqual(s_params, {})
def testSparseTensorAccess(self):
interpreter = interpreter_wrapper.InterpreterWithCustomOps(
model_path=resource_loader.get_path_to_datafile(
'../testdata/sparse_tensor.bin'),
custom_op_registerers=['TF_TestRegisterer'])
interpreter.allocate_tensors()
# Tensor at index 0 is sparse.
compressed_buffer = interpreter.get_tensor(0)
# Ensure that the buffer is of correct size and value.
self.assertEqual(len(compressed_buffer), 12)
sparse_value = [1, 0, 0, 4, 2, 3, 0, 0, 5, 0, 0, 6]
self.assertAllEqual(compressed_buffer, sparse_value)
tensor_details = interpreter.get_tensor_details()[0]
s_params = tensor_details['sparsity_parameters']
# Ensure sparsity parameter returned is correct
self.assertAllEqual(s_params['traversal_order'], [0, 1, 2, 3])
self.assertAllEqual(s_params['block_map'], [0, 1])
dense_dim_metadata = {'format': 0, 'dense_size': 2}
self.assertAllEqual(s_params['dim_metadata'][0], dense_dim_metadata)
self.assertAllEqual(s_params['dim_metadata'][2], dense_dim_metadata)
self.assertAllEqual(s_params['dim_metadata'][3], dense_dim_metadata)
self.assertEqual(s_params['dim_metadata'][1]['format'], 1)
self.assertAllEqual(s_params['dim_metadata'][1]['array_segments'],
[0, 2, 3])
self.assertAllEqual(s_params['dim_metadata'][1]['array_indices'], [0, 1, 1])
@mock.patch.object(metrics.TFLiteMetrics,
'increase_counter_interpreter_creation')
def testCreationCounter(self, increase_call):
interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'))
increase_call.assert_called_once()
class InterpreterTestErrorPropagation(test_util.TensorFlowTestCase):
def testInvalidModelContent(self):
with self.assertRaisesRegex(ValueError,
'Model provided has model identifier \''):
interpreter_wrapper.Interpreter(model_content=b'garbage')
def testInvalidModelFile(self):
with self.assertRaisesRegex(ValueError,
'Could not open \'totally_invalid_file_name\''):
interpreter_wrapper.Interpreter(model_path='totally_invalid_file_name')
def testInvokeBeforeReady(self):
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'))
with self.assertRaisesRegex(RuntimeError,
'Invoke called on model that is not ready'):
interpreter.invoke()
def testInvalidModelFileContent(self):
with self.assertRaisesRegex(
ValueError, '`model_path` or `model_content` must be specified.'):
interpreter_wrapper.Interpreter(model_path=None, model_content=None)
def testInvalidIndex(self):
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'))
interpreter.allocate_tensors()
# Invalid tensor index passed.
with self.assertRaisesRegex(ValueError, 'Tensor with no shape found.'):
interpreter._get_tensor_details(4, 0)
with self.assertRaisesRegex(ValueError, 'Invalid node index'):
interpreter._get_op_details(4)
def testEmptyInputTensor(self):
class TestModel(tf.keras.models.Model):
@tf.function(
input_signature=[tf.TensorSpec(shape=[None], dtype=tf.float32)])
def TestSum(self, x):
return tf.raw_ops.Sum(input=x, axis=[0])
test_model = TestModel()
converter = tf.lite.TFLiteConverter.from_concrete_functions([
test_model.TestSum.get_concrete_function(
tf.TensorSpec([None], tf.float32))
], test_model)
model = converter.convert()
interpreter = tf.lite.Interpreter(model_content=model)
# Make sure that passing empty tensor doesn't cause any errors.
interpreter.get_signature_runner()(x=tf.zeros([0], tf.float32))
class InterpreterTensorAccessorTest(test_util.TensorFlowTestCase):
def setUp(self):
super(InterpreterTensorAccessorTest, self).setUp()
self.interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'))
self.interpreter.allocate_tensors()
self.input0 = self.interpreter.get_input_details()[0]['index']
self.initial_data = np.array([[-1., -2., -3., -4.]], np.float32)
def testTensorAccessor(self):
"""Check that tensor returns a reference."""
array_ref = self.interpreter.tensor(self.input0)
np.copyto(array_ref(), self.initial_data)
self.assertAllEqual(array_ref(), self.initial_data)
self.assertAllEqual(
self.interpreter.get_tensor(self.input0), self.initial_data)
def testGetTensorAccessor(self):
"""Check that get_tensor returns a copy."""
self.interpreter.set_tensor(self.input0, self.initial_data)
array_initial_copy = self.interpreter.get_tensor(self.input0)
new_value = np.add(1., array_initial_copy)
self.interpreter.set_tensor(self.input0, new_value)
self.assertAllEqual(array_initial_copy, self.initial_data)
self.assertAllEqual(self.interpreter.get_tensor(self.input0), new_value)
def testBase(self):
self.assertTrue(self.interpreter._safe_to_run())
_ = self.interpreter.tensor(self.input0)
self.assertTrue(self.interpreter._safe_to_run())
in0 = self.interpreter.tensor(self.input0)()
self.assertFalse(self.interpreter._safe_to_run())
in0b = self.interpreter.tensor(self.input0)()
self.assertFalse(self.interpreter._safe_to_run())
# Now get rid of the buffers so that we can evaluate.
del in0
del in0b
self.assertTrue(self.interpreter._safe_to_run())
def testBaseProtectsFunctions(self):
in0 = self.interpreter.tensor(self.input0)()
# Make sure we get an exception if we try to run an unsafe operation
with self.assertRaisesRegex(RuntimeError, 'There is at least 1 reference'):
_ = self.interpreter.allocate_tensors()
# Make sure we get an exception if we try to run an unsafe operation
with self.assertRaisesRegex(RuntimeError, 'There is at least 1 reference'):
_ = self.interpreter.invoke() # pylint: disable=assignment-from-no-return
# Now test that we can run
del in0 # this is our only buffer reference, so now it is safe to change
in0safe = self.interpreter.tensor(self.input0)
_ = self.interpreter.allocate_tensors()
del in0safe # make sure in0Safe is held but lint doesn't complain
class InterpreterDelegateTest(test_util.TensorFlowTestCase):
def setUp(self):
super(InterpreterDelegateTest, self).setUp()
self._delegate_file = resource_loader.get_path_to_datafile(
'testdata/test_delegate.so')
self._model_file = resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite')
# Load the library to reset the counters.
library = ctypes.pydll.LoadLibrary(self._delegate_file)
library.initialize_counters()
def _TestInterpreter(self, model_path, options=None):
"""Test wrapper function that creates an interpreter with the delegate."""
delegate = interpreter_wrapper.load_delegate(self._delegate_file, options)
return interpreter_wrapper.Interpreter(
model_path=model_path, experimental_delegates=[delegate])
def testDelegate(self):
"""Tests the delegate creation and destruction."""
interpreter = self._TestInterpreter(model_path=self._model_file)
lib = interpreter._delegates[0]._library
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 1)
del interpreter
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 1)
self.assertEqual(lib.get_num_delegates_invoked(), 1)
def testMultipleInterpreters(self):
delegate = interpreter_wrapper.load_delegate(self._delegate_file)
lib = delegate._library
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 0)
interpreter_a = interpreter_wrapper.Interpreter(
model_path=self._model_file, experimental_delegates=[delegate])
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 1)
interpreter_b = interpreter_wrapper.Interpreter(
model_path=self._model_file, experimental_delegates=[delegate])
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 2)
del delegate
del interpreter_a
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 2)
del interpreter_b
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 1)
self.assertEqual(lib.get_num_delegates_invoked(), 2)
def testDestructionOrder(self):
"""Make sure internal _interpreter object is destroyed before delegate."""
self.skipTest('TODO(b/142136355): fix flakiness and re-enable')
# Track which order destructions were doned in
destructions = []
def register_destruction(x):
destructions.append(x if isinstance(x, str) else x.decode('utf-8'))
return 0
# Make a wrapper for the callback so we can send this to ctypes
delegate = interpreter_wrapper.load_delegate(self._delegate_file)
# Make an interpreter with the delegate
interpreter = interpreter_wrapper.Interpreter(
model_path=resource_loader.get_path_to_datafile(
'testdata/permute_float.tflite'),
experimental_delegates=[delegate])
class InterpreterDestroyCallback:
def __del__(self):
register_destruction('interpreter')
interpreter._interpreter.stuff = InterpreterDestroyCallback()
# Destroy both delegate and interpreter
library = delegate._library
prototype = ctypes.CFUNCTYPE(ctypes.c_int, (ctypes.c_char_p))
library.set_destroy_callback(prototype(register_destruction))
del delegate
del interpreter
library.set_destroy_callback(None)
# check the interpreter was destroyed before the delegate
self.assertEqual(destructions, ['interpreter', 'test_delegate'])
def testOptions(self):
delegate_a = interpreter_wrapper.load_delegate(self._delegate_file)
lib = delegate_a._library
self.assertEqual(lib.get_num_delegates_created(), 1)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 0)
self.assertEqual(lib.get_options_counter(), 0)
delegate_b = interpreter_wrapper.load_delegate(
self._delegate_file, options={
'unused': False,
'options_counter': 2
})
lib = delegate_b._library
self.assertEqual(lib.get_num_delegates_created(), 2)
self.assertEqual(lib.get_num_delegates_destroyed(), 0)
self.assertEqual(lib.get_num_delegates_invoked(), 0)
self.assertEqual(lib.get_options_counter(), 2)
del delegate_a
del delegate_b
self.assertEqual(lib.get_num_delegates_created(), 2)
self.assertEqual(lib.get_num_delegates_destroyed(), 2)
self.assertEqual(lib.get_num_delegates_invoked(), 0)
self.assertEqual(lib.get_options_counter(), 2)
def testFail(self):
with self.assertRaisesRegex(
# Due to exception chaining in PY3, we can't be more specific here and
# check that the phrase 'Fail argument sent' is present.
ValueError, 'Failed to load delegate from'):
interpreter_wrapper.load_delegate(
self._delegate_file, options={'fail': 'fail'})
if __name__ == '__main__':
test.main()