-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloop_distributed_test.py
190 lines (150 loc) · 5.15 KB
/
loop_distributed_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests involving the tf.distributed datasets."""
import itertools
from absl.testing import parameterized
import tensorflow as tf
from tensorflow.python.autograph.tests import reference_test_base
def no_vars_loop(strat, iterable):
for pr in iterable:
tf.print(strat.reduce('SUM', pr, axis=0))
def single_var_loop(strat, iterable):
s = 0
for pr in iterable:
# TODO(mdan): It would be nice to be able to write s = s * 10 + pr.
s = s * 10 + strat.reduce('SUM', pr, axis=0)
return s
def loop_with_break(strat, iterable):
s = 0
for pr in iterable:
if strat.reduce('SUM', pr, axis=0) % 5 == 0:
break
s = s * 10 + strat.reduce('SUM', pr, axis=0)
return s
def loop_with_continue(strat, iterable):
s = 0
for pr in iterable:
if strat.reduce('SUM', pr, axis=0) % 2 == 0:
continue
s = s * 10 + strat.reduce('SUM', pr, axis=0)
return s
def two_vars_loop(strat, iterable):
s = 0
p = 1
for pr in iterable:
e = strat.reduce('SUM', pr, axis=0)
s += e
p *= e
return s, p
def enumeration(strat, iterable):
s = 0
p = 1
for i, pr in enumerate(iterable):
e = strat.reduce('SUM', pr, axis=0)
s = s * 10 + e
p *= i
return s, p
def iterator_next(strat, iterable):
itr = iter(iterable)
return strat.reduce('SUM', next(itr), axis=0)
def iterator_next_multiple_calls(strat, iterable):
itr = iter(iterable)
a = strat.reduce('SUM', next(itr), axis=0)
b = strat.reduce('SUM', next(itr), axis=0)
return a * 10 + b
def iterator_next_in_limited_loop(strat, iterable, l):
itr = iter(iterable)
s = 0
for _ in l:
s = s * 10 + strat.reduce('SUM', next(itr), axis=0)
return s
def iterator_next_stopping(strat, iterable, cond):
# This case will raise, but not the expected StopIteration error.
itr = iter(iterable)
while cond:
strat.reduce('SUM', next(itr), axis=0)
def iterator_next_with_catching_stop_iteration(strat, iterable, cond):
# This is the one instance when the use of TF iterators does not work as
# intended. In graph mode, the `except` below will never catch, and the
# tf.function will raise the error instead.
# TODO(b/132311724): The error should be friendlier here.
# Note: b/132298783 covers actually supporting this pattern.
itr = iter(iterable)
try:
while cond:
strat.reduce('SUM', next(itr), axis=0)
except StopIteration:
pass
def _distributed_dataset():
cpus = tf.config.experimental.list_physical_devices('CPU')
tf.config.experimental.set_virtual_device_configuration(
cpus[0], [tf.config.experimental.VirtualDeviceConfiguration()] * 2)
strat = tf.distribute.MirroredStrategy()
ds = tf.data.Dataset.from_tensor_slices(tf.reshape(tf.range(12), (3, 4)))
return strat, strat.experimental_distribute_dataset(ds)
def _distributed_iterator():
strat, ds = _distributed_dataset()
return strat, iter(ds)
class ReferenceTest(reference_test_base.TestCase, parameterized.TestCase):
@parameterized.parameters(*itertools.product(
(
no_vars_loop,
single_var_loop,
two_vars_loop,
loop_with_break,
loop_with_continue,
),
(
_distributed_dataset,
_distributed_iterator,
),
))
def test_basic(self, test_fn, target):
if (test_fn in (loop_with_break, loop_with_continue) and
target is _distributed_dataset):
self.skipTest('b/162250181')
self.assertFunctionMatchesEagerStatefulInput(test_fn, target)
def test_iterator_next(self):
strat, ds = _distributed_dataset()
self.assertFunctionMatchesEager(iterator_next, strat, ds)
def test_iterator_next_multiple_calls(self):
strat, ds = _distributed_dataset()
self.assertFunctionMatchesEager(iterator_next_multiple_calls, strat, ds)
@parameterized.parameters(*itertools.product(
(
0,
1,
2,
),
(
range,
tf.range,
),
))
def test_iterator_next_in_limited_loop(self, n, type_):
n = type_(n)
strat, ds = _distributed_dataset()
self.assertFunctionMatchesEager(iterator_next_in_limited_loop, strat, ds, n)
@parameterized.parameters(
(iterator_next_stopping,),
# Note that `except` has no effect in graph mode.
(iterator_next_with_catching_stop_iteration,),
)
def test_iterator_next_stopping(self, test_fn):
strat, ds = _distributed_dataset()
with self.assertRaises(tf.errors.OutOfRangeError):
tf.function(test_fn)(strat, ds, tf.constant(True))
if __name__ == '__main__':
tf.test.main()