-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdebug_data.py
1620 lines (1297 loc) · 58.2 KB
/
debug_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes and functions to handle debug-dump data of TensorFlow Debugger."""
import collections
import glob
import json
import os
import platform
import re
import numpy as np
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.core.util import event_pb2
from tensorflow.python.debug.lib import debug_graphs
from tensorflow.python.framework import tensor_util
from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import compat
# TODO(cais): Tie these string constants in with C++?
METADATA_FILE_PREFIX = "_tfdbg_"
CORE_METADATA_TAG = "core_metadata_"
GRAPH_FILE_TAG = "graph_"
DEVICE_TAG = "device_"
HASH_TAG = "hash"
FETCHES_INFO_FILE_TAG = "fetches_info_"
FEED_KEYS_INFO_FILE_TAG = "feed_keys_info_"
def _glob(glob_pattern):
if platform.system() == "Windows":
return glob.glob(glob_pattern)
else:
return gfile.Glob(glob_pattern)
class InconvertibleTensorProto:
"""Represents a TensorProto that cannot be converted to np.ndarray."""
def __init__(self, tensor_proto, initialized=True):
"""Constructor.
Args:
tensor_proto: the `TensorProto` object that cannot be represented as a
`np.ndarray` object.
initialized: (`bool`) whether the Tensor is initialized.
"""
self._tensor_proto = tensor_proto
self._initialized = initialized
def __str__(self):
output = "" if self._initialized else "Uninitialized tensor:\n"
output += str(self._tensor_proto)
return output
@property
def initialized(self):
return self._initialized
def load_tensor_from_event_file(event_file_path):
"""Load a tensor from an event file.
Assumes that the event file contains a `Event` protobuf and the `Event`
protobuf contains a `Tensor` value.
Args:
event_file_path: (`str`) path to the event file.
Returns:
The tensor value loaded from the event file, as a `numpy.ndarray`. For
uninitialized Tensors, returns `None`. For Tensors of data types that
cannot be converted to `numpy.ndarray` (e.g., `tf.resource`), return
`None`.
"""
event = event_pb2.Event()
with gfile.Open(event_file_path, "rb") as f:
event.ParseFromString(f.read())
return load_tensor_from_event(event)
def load_tensor_from_event(event):
"""Load a tensor from an Event proto.
Args:
event: The Event proto, assumed to hold a tensor value in its
summary.value[0] field.
Returns:
The tensor value loaded from the event file, as a `numpy.ndarray`, if
representation of the tensor value by a `numpy.ndarray` is possible.
For uninitialized Tensors, returns `None`. For Tensors of data types that
cannot be represented as `numpy.ndarray` (e.g., `tf.resource`), return
the `TensorProto` protobuf object without converting it to a
`numpy.ndarray`.
"""
tensor_proto = event.summary.value[0].tensor
shape = tensor_util.TensorShapeProtoToList(tensor_proto.tensor_shape)
num_elements = 1
for shape_dim in shape:
num_elements *= shape_dim
if tensor_proto.tensor_content or tensor_proto.string_val or not num_elements:
# Initialized tensor or empty tensor.
if tensor_proto.dtype == types_pb2.DT_RESOURCE:
tensor_value = InconvertibleTensorProto(tensor_proto)
else:
try:
tensor_value = tensor_util.MakeNdarray(tensor_proto)
except KeyError:
tensor_value = InconvertibleTensorProto(tensor_proto)
else:
# Uninitialized tensor or tensor of unconvertible data type.
tensor_value = InconvertibleTensorProto(tensor_proto, False)
return tensor_value
def _load_graph_def_from_event_file(event_file_path):
event = event_pb2.Event()
with gfile.Open(event_file_path, "rb") as f:
event.ParseFromString(f.read())
return graph_pb2.GraphDef.FromString(event.graph_def)
def _load_log_message_from_event_file(event_file_path):
event = event_pb2.Event()
with gfile.Open(event_file_path, "rb") as f:
event.ParseFromString(f.read())
return event.log_message.message
def _is_graph_file(file_name):
return file_name.startswith(METADATA_FILE_PREFIX + GRAPH_FILE_TAG)
def _is_run_fetches_info_file(file_name):
return file_name == METADATA_FILE_PREFIX + FETCHES_INFO_FILE_TAG
def _is_run_feed_keys_info_file(file_name):
return file_name == METADATA_FILE_PREFIX + FEED_KEYS_INFO_FILE_TAG
def _get_tensor_name(node_name, output_slot):
"""Get tensor name given node name and output slot index.
Args:
node_name: Name of the node that outputs the tensor, as a string.
output_slot: Output slot index of the tensor, as an integer.
Returns:
Name of the tensor, as a string.
"""
return "%s:%d" % (node_name, output_slot)
def _get_tensor_watch_key(node_name, output_slot, debug_op):
"""Get the string representation of a debug watch on a tensor.
Args:
node_name: Name of the node by which the watched tensor is produced, as a
string.
output_slot: Output slot index of the tensor, as an integer.
debug_op: Name of the debug op that is used to watch the tensor, as a
string.
Returns:
A string representing the debug watch on the tensor (i.e., the "watch
key").
"""
return "%s:%s" % (_get_tensor_name(node_name, output_slot), debug_op)
def has_inf_or_nan(datum, tensor):
"""A predicate for whether a tensor consists of any bad numerical values.
This predicate is common enough to merit definition in this module.
Bad numerical values include `nan`s and `inf`s.
The signature of this function follows the requirement of the method
`DebugDumpDir.find()`.
Args:
datum: (`DebugTensorDatum`) Datum metadata.
tensor: (`numpy.ndarray` or None) Value of the tensor. None represents
an uninitialized tensor.
Returns:
(`bool`) True if and only if tensor consists of any nan or inf values.
"""
_ = datum # Datum metadata is unused in this predicate.
if isinstance(tensor, InconvertibleTensorProto):
# Uninitialized tensor doesn't have bad numerical values.
# Also return False for data types that cannot be represented as numpy
# arrays.
return False
elif (np.issubdtype(tensor.dtype, np.floating) or
np.issubdtype(tensor.dtype, np.complexfloating) or
np.issubdtype(tensor.dtype, np.integer)):
return np.any(np.isnan(tensor)) or np.any(np.isinf(tensor))
else:
return False
_CoreMetadata = collections.namedtuple("CoreMetadata", [
"global_step", "session_run_index", "executor_step_index", "input_names",
"output_names", "target_nodes"
])
def extract_core_metadata_from_event_proto(event):
json_metadata = json.loads(event.log_message.message)
return _CoreMetadata(json_metadata["global_step"],
json_metadata["session_run_index"],
json_metadata["executor_step_index"],
json_metadata["input_names"],
json_metadata["output_names"],
json_metadata["target_nodes"])
def device_name_to_device_path(device_name):
"""Convert device name to device path."""
device_name_items = compat.as_text(device_name).split("/")
device_name_items = [item.replace(":", "_") for item in device_name_items]
return METADATA_FILE_PREFIX + DEVICE_TAG + ",".join(device_name_items)
def device_path_to_device_name(device_dir):
"""Parse device name from device path.
Args:
device_dir: (str) a directory name for the device.
Returns:
(str) parsed device name.
"""
path_items = os.path.basename(device_dir)[
len(METADATA_FILE_PREFIX) + len(DEVICE_TAG):].split(",")
return "/".join([
path_item.replace("device_", "device:").replace("_", ":", 1)
for path_item in path_items])
class DebugTensorDatum:
"""A single tensor dumped by TensorFlow Debugger (tfdbg).
Contains metadata about the dumped tensor, including `timestamp`,
`node_name`, `output_slot`, `debug_op`, and path to the dump file
(`file_path`).
This type does not hold the generally space-expensive tensor value (numpy
array). Instead, it points to the file from which the tensor value can be
loaded (with the `get_tensor` method) if needed.
"""
def __init__(self, dump_root, debug_dump_rel_path):
"""`DebugTensorDatum` constructor.
Args:
dump_root: (`str`) Debug dump root directory. This path should not include
the path component that represents the device name (see also below).
debug_dump_rel_path: (`str`) Path to a debug dump file, relative to the
`dump_root`. The first item of this relative path is assumed to be
a path representing the name of the device that the Tensor belongs to.
See `device_path_to_device_name` for more details on the device path.
For example, suppose the debug dump root
directory is `/tmp/tfdbg_1` and the dump file is at
`/tmp/tfdbg_1/<device_path>/>ns_1/node_a_0_DebugIdentity_123456789`,
then the value of the debug_dump_rel_path should be
`<device_path>/ns_1/node_a_0_DebugIdentity_1234456789`.
Raises:
ValueError: If the base file name of the dump file does not conform to
the dump file naming pattern:
`node_name`_`output_slot`_`debug_op`_`timestamp`
"""
path_components = os.path.normpath(debug_dump_rel_path).split(os.sep)
self._device_name = device_path_to_device_name(path_components[0])
base = path_components[-1]
if base.count("_") < 3:
raise ValueError(
"Dump file path does not conform to the naming pattern: %s" % base)
self._extended_timestamp = base.split("_")[-1]
# It may include an index suffix at the end if file path collision happened
# due to identical timestamps.
if "-" in self._extended_timestamp:
self._timestamp = int(
self._extended_timestamp[:self._extended_timestamp.find("-")])
else:
self._timestamp = int(self._extended_timestamp)
self._debug_op = base.split("_")[-2]
self._output_slot = int(base.split("_")[-3])
node_base_name = "_".join(base.split("_")[:-3])
self._node_name = "/".join(path_components[1:-1] + [node_base_name])
self._file_path = os.path.join(dump_root, debug_dump_rel_path)
self._dump_size_bytes = (gfile.Stat(self._file_path).length if
gfile.Exists(self._file_path) else None)
def __str__(self):
return "{DebugTensorDatum (%s) %s:%d @ %s @ %d}" % (self.device_name,
self.node_name,
self.output_slot,
self.debug_op,
self.timestamp)
def __repr__(self):
return self.__str__()
def get_tensor(self):
"""Get tensor from the dump (`Event`) file.
Returns:
The tensor loaded from the dump (`Event`) file.
"""
return load_tensor_from_event_file(self.file_path)
# TODO(cais): Add time unit suffix to timestamp and t0 (us).
@property
def timestamp(self):
"""Timestamp of when this tensor value was dumped.
Returns:
(`int`) The timestamp in microseconds.
"""
return self._timestamp
@property
def extended_timestamp(self):
"""Extended timestamp, possibly with an index suffix.
The index suffix, e.g., "-1", is for disambiguating multiple dumps of the
same tensor with the same timestamp, which can occur if the dumping events
are spaced by shorter than the temporal resolution of the timestamps.
Returns:
(`str`) The extended timestamp.
"""
return self._extended_timestamp
@property
def debug_op(self):
"""Name of the debug op.
Returns:
(`str`) debug op name (e.g., `DebugIdentity`).
"""
return self._debug_op
@property
def device_name(self):
"""Name of the device that the tensor belongs to.
Returns:
(`str`) device name.
"""
return self._device_name
@property
def node_name(self):
"""Name of the node from which the tensor value was dumped.
Returns:
(`str`) name of the node watched by the debug op.
"""
return self._node_name
@property
def output_slot(self):
"""Output slot index from which the tensor value was dumped.
Returns:
(`int`) output slot index watched by the debug op.
"""
return self._output_slot
@property
def tensor_name(self):
"""Name of the tensor watched by the debug op.
Returns:
(`str`) `Tensor` name, in the form of `node_name`:`output_slot`
"""
return _get_tensor_name(self.node_name, self.output_slot)
@property
def watch_key(self):
"""Watch key identities a debug watch on a tensor.
Returns:
(`str`) A watch key, in the form of `tensor_name`:`debug_op`.
"""
return _get_tensor_watch_key(self.node_name, self.output_slot,
self.debug_op)
@property
def file_path(self):
"""Path to the file which stores the value of the dumped tensor."""
return self._file_path
@property
def dump_size_bytes(self):
"""Size of the dump file.
Unit: byte.
Returns:
If the dump file exists, size of the dump file, in bytes.
If the dump file does not exist, None.
"""
return self._dump_size_bytes
class WatchKeyDoesNotExistInDebugDumpDirError(ValueError):
pass
class DebugDumpDir:
"""Data set from a debug-dump directory on filesystem.
An instance of `DebugDumpDir` contains all `DebugTensorDatum` instances
in a tfdbg dump root directory.
"""
def __init__(self, dump_root, partition_graphs=None, validate=True):
"""`DebugDumpDir` constructor.
Args:
dump_root: (`str`) path to the dump root directory.
partition_graphs: A repeated field of GraphDefs representing the
partition graphs executed by the TensorFlow runtime.
validate: (`bool`) whether the dump files are to be validated against the
partition graphs.
Raises:
IOError: If dump_root does not exist as a directory.
ValueError: If more than one core metadata file is found under the dump
root directory.
"""
if not gfile.IsDirectory(dump_root):
raise IOError("Dump root directory %s does not exist" % dump_root)
self._core_metadata = []
# Find the list of devices.
self._dump_root = dump_root
self._load_core_metadata()
self._load_fetches_info()
self._load_feeds_info()
self._load_all_device_dumps(partition_graphs, validate)
self._python_graph = None
def _load_all_device_dumps(self, partition_graphs, validate):
"""Load the dump data for all devices."""
device_dirs = _glob(os.path.join(
self._dump_root, METADATA_FILE_PREFIX + DEVICE_TAG + "*"))
self._device_names = []
self._t0s = {}
self._dump_tensor_data = {}
self._dump_graph_file_paths = {}
self._debug_watches = {}
self._watch_key_to_devices = {}
self._watch_key_to_datum = {}
self._watch_key_to_rel_time = {}
self._watch_key_to_dump_size_bytes = {}
for device_dir in device_dirs:
device_name = device_path_to_device_name(device_dir)
self._device_names.append(device_name)
self._load_device_dumps(device_name, device_dir)
self._load_partition_graphs(partition_graphs, validate)
self._calculate_t0()
for device_name in self._device_names:
self._create_tensor_watch_maps(device_name)
def _load_device_dumps(self, device_name, device_root):
"""Load `DebugTensorDatum` instances from the dump root of a given device.
Populates a map {device_name: a list of `DebugTensorDatum`}, where the list
is sorted by ascending timestamp.
This sorting order reflects the order in which the TensorFlow executor
processed the nodes of the graph. It is (one of many possible) topological
sort of the nodes. This is useful for displaying tensors in the debugger
frontend as well as for the use case in which the user wants to find a
"culprit tensor", i.e., the first tensor in the graph that exhibits certain
problematic properties, i.e., all zero values, or bad numerical values such
as nan and inf.
In addition, creates a map from node name to debug watches. In this Map,
the key is the watched node name; the value is a dictionary.
Of this dictionary, the key is the watched_output_slot.
This method attempts to load the debug watches from the tensor dump files
first, before loading the full set of debug watches from the partition
graphs as done later. This is necessary because sometimes the partition
graphs may not be available, e.g., when the run errors out.
Args:
device_name: (`str`) name of the device.
device_root: (`str`) dump root directory of the given device.
Raises:
ValueError: If GraphDef for the device is not available.
"""
self._dump_tensor_data[device_name] = []
self._debug_watches[device_name] = collections.defaultdict(
lambda: collections.defaultdict(set))
for root, _, files in gfile.Walk(device_root):
for f in files:
if _is_graph_file(f):
self._dump_graph_file_paths[device_name] = os.path.join(root, f)
else:
datum = self._dump_file_name_to_datum(root, f)
self._dump_tensor_data[device_name].append(datum)
self._debug_watches[device_name][datum.node_name][
datum.output_slot].add(datum.debug_op)
self._dump_tensor_data[device_name] = sorted(
self._dump_tensor_data[device_name],
key=lambda x: x.extended_timestamp)
if self._dump_tensor_data[device_name]:
self._t0s[device_name] = self._dump_tensor_data[device_name][0].timestamp
else:
self._t0s[device_name] = None
def _calculate_t0(self):
"""Calculate the first timestamp across all devices."""
t0s = [t0 for t0 in self._t0s.values() if t0 is not None]
self._t0 = min(t0s) if t0s else None
def _load_core_metadata(self):
core_metadata_files = _glob(os.path.join(
self._dump_root, METADATA_FILE_PREFIX + CORE_METADATA_TAG + "*"))
for core_metadata_file in core_metadata_files:
with gfile.Open(core_metadata_file, "rb") as f:
event = event_pb2.Event()
event.ParseFromString(f.read())
self._core_metadata.append(
extract_core_metadata_from_event_proto(event))
def _load_fetches_info(self):
fetches_info_files = _glob(os.path.join(
self._dump_root, METADATA_FILE_PREFIX + FETCHES_INFO_FILE_TAG + "*"))
self._run_fetches_info = []
for fetches_info_file in fetches_info_files:
self._run_fetches_info.append(
_load_log_message_from_event_file(fetches_info_file))
def _load_feeds_info(self):
feeds_info_files = _glob(os.path.join(
self._dump_root, METADATA_FILE_PREFIX + FEED_KEYS_INFO_FILE_TAG + "*"))
self._run_feed_keys_info = []
for feeds_info_file in feeds_info_files:
self._run_feed_keys_info.append(
_load_log_message_from_event_file(feeds_info_file))
def _dump_file_name_to_datum(self, dir_name, file_name):
"""Obtain a DebugTensorDatum from the directory and file name.
Args:
dir_name: (`str`) Name of the directory in which the dump file resides.
file_name: (`str`) Base name of the dump file.
Returns:
(`DebugTensorDatum`) The `DebugTensorDatum` loaded from the dump file.
"""
# Calculate the relative path of the dump file with respect to the root.
debug_dump_rel_path = os.path.join(
os.path.relpath(dir_name, self._dump_root), file_name)
return DebugTensorDatum(self._dump_root, debug_dump_rel_path)
def _create_tensor_watch_maps(self, device_name):
"""Create maps from tensor watch keys to datum and to timestamps.
Create a map from watch key (tensor name + debug op) to `DebugTensorDatum`
item. Also make a map from watch key to relative timestamp.
"relative" means (absolute timestamp - t0).
Args:
device_name: (str) name of the device.
"""
self._watch_key_to_datum[device_name] = {}
self._watch_key_to_rel_time[device_name] = {}
self._watch_key_to_dump_size_bytes[device_name] = {}
for datum in self._dump_tensor_data[device_name]:
if datum.watch_key not in self._watch_key_to_devices:
self._watch_key_to_devices[datum.watch_key] = {device_name}
else:
self._watch_key_to_devices[datum.watch_key].add(device_name)
if datum.watch_key not in self._watch_key_to_datum[device_name]:
self._watch_key_to_datum[device_name][datum.watch_key] = [datum]
self._watch_key_to_rel_time[device_name][datum.watch_key] = [
datum.timestamp - self._t0]
self._watch_key_to_dump_size_bytes[device_name][datum.watch_key] = [
datum.dump_size_bytes]
else:
self._watch_key_to_datum[device_name][datum.watch_key].append(datum)
self._watch_key_to_rel_time[device_name][datum.watch_key].append(
datum.timestamp - self._t0)
self._watch_key_to_dump_size_bytes[device_name][datum.watch_key].append(
datum.dump_size_bytes)
def set_python_graph(self, python_graph):
"""Provide Python `Graph` object to the wrapper.
Unlike the partition graphs, which are protobuf `GraphDef` objects, `Graph`
is a Python object and carries additional information such as the traceback
of the construction of the nodes in the graph.
Args:
python_graph: (ops.Graph) The Python Graph object.
"""
self._python_graph = python_graph
self._node_traceback = {}
if self._python_graph:
for op in self._python_graph.get_operations():
self._node_traceback[op.name] = tuple(map(tuple, op.traceback))
@property
def python_graph(self):
"""Get the Python graph.
Returns:
If the Python graph has been set, returns a `tf.Graph` object. Otherwise,
returns None.
"""
return self._python_graph
@property
def core_metadata(self):
"""Metadata about the `Session.run()` call from the core runtime.
Of the three counters available in the return value, `global_step` is
supplied by the caller of the debugged `Session.run()`, while
`session_run_index` and `executor_step_index` are determined by the state
of the core runtime, automatically. For the same fetch list, feed keys and
debug tensor watch options, the same executor will be used and
`executor_step_index` should increase by one at a time. However, runs with
different fetch lists, feed keys and debug_tensor watch options that all
share the same `Session` object can lead to gaps in `session_run_index`.
Returns:
If core metadata are loaded, a `namedtuple` with the fields:
`global_step`: A global step count supplied by the caller of
`Session.run()`. It is optional to the caller. If the caller did not
supply this parameter, its value will be -1.
`session_run_index`: A sorted index for Run() calls to the underlying
TensorFlow `Session` object.
`executor_step_index`: A counter for invocations of a given runtime
executor. The same executor is re-used for the same fetched tensors,
target nodes, input feed keys and debug tensor watch options.
`input_names`: Names of the input (feed) Tensors.
`output_names`: Names of the output (fetched) Tensors.
`target_nodes`: Names of the target nodes.
If the core metadata have not been loaded, `None`.
If more than one core metadata files exist, return a list of the
`nametuple` described above.
"""
output = self._core_metadata
return output[0] if len(output) == 1 else output
@property
def dumped_tensor_data(self):
"""Retrieve dumped tensor data."""
if len(self.devices()) == 1:
return self._dump_tensor_data[self.devices()[0]]
else:
all_devices_data = self._dump_tensor_data.values()
data = []
for device_data in all_devices_data:
data.extend(device_data)
return sorted(data, key=lambda x: x.extended_timestamp)
@property
def t0(self):
"""Absolute timestamp of the first dumped tensor across all devices.
Returns:
(`int`) absolute timestamp of the first dumped tensor, in microseconds.
"""
return self._t0
@property
def size(self):
"""Total number of dumped tensors in the dump root directory.
Returns:
(`int`) The total number of dumped tensors in the dump root directory.
"""
return sum(len(self._dump_tensor_data[device_name])
for device_name in self._dump_tensor_data)
def _load_partition_graphs(self, client_partition_graphs, validate):
"""Load and process partition graphs.
Load the graphs; parse the input and control input structure; obtain the
device and op type of each node; remove the Copy and debug ops inserted
by the debugger. The gathered information can be used to validate the
tensor dumps.
Args:
client_partition_graphs: A repeated field of GraphDefs representing the
partition graphs executed by the TensorFlow runtime, from the Python
client. These partition graphs are used only if partition graphs
cannot be loaded from the dump directory on the file system.
validate: (`bool`) Whether the dump files are to be validated against the
partition graphs.
Raises:
ValueError: If the partition GraphDef of one or more devices fail to be
loaded.
"""
self._debug_graphs = {}
self._node_devices = {}
partition_graphs_and_device_names = []
for device_name in self._device_names:
partition_graph = None
if device_name in self._dump_graph_file_paths:
partition_graph = _load_graph_def_from_event_file(
self._dump_graph_file_paths[device_name])
else:
logging.warn(
"Failed to load partition graphs for device %s from disk. "
"As a fallback, the client graphs will be used. This "
"may cause mismatches in device names." % device_name)
partition_graph = self._find_partition_graph(client_partition_graphs,
device_name)
if partition_graph:
partition_graphs_and_device_names.append((partition_graph,
device_name))
for partition_graph, maybe_device_name in partition_graphs_and_device_names:
debug_graph = debug_graphs.DebugGraph(partition_graph,
device_name=maybe_device_name)
self._debug_graphs[debug_graph.device_name] = debug_graph
self._collect_node_devices(debug_graph)
if validate and debug_graph.device_name in self._dump_tensor_data:
self._validate_dump_with_graphs(debug_graph.device_name)
def _find_partition_graph(self, partition_graphs, device_name):
if partition_graphs is None:
return None
else:
for graph_def in partition_graphs:
for node_def in graph_def.node:
if node_def.device == device_name:
return graph_def
return None
def _collect_node_devices(self, debug_graph):
for node_name in debug_graph.node_devices:
if node_name in self._node_devices:
self._node_devices[node_name] = self._node_devices[node_name].union(
debug_graph.node_devices[node_name])
else:
self._node_devices[node_name] = debug_graph.node_devices[node_name]
def _validate_dump_with_graphs(self, device_name):
"""Validate the dumped tensor data against the partition graphs.
Only the watched nodes are validated by this method, because tfdbg allows
clients to watch only a subset of the nodes.
Args:
device_name: (`str`) device name.
Raises:
LookupError: If the partition graphs have not been loaded yet.
ValueError: If dumps contain node names not found in partition graph.
Or if the temporal order of the dump's timestamps violate the
input relations on the partition graphs.
"""
if not self._debug_graphs:
raise LookupError(
"No partition graphs loaded for device %s" % device_name)
debug_graph = self._debug_graphs[device_name]
# Verify that the node names in the dump data are all present in the
# partition graphs.
for datum in self._dump_tensor_data[device_name]:
if datum.node_name not in debug_graph.node_inputs:
raise ValueError("Node name '%s' is not found in partition graphs of "
"device %s." % (datum.node_name, device_name))
pending_inputs = {}
for node in debug_graph.node_inputs:
pending_inputs[node] = []
inputs = debug_graph.node_inputs[node]
for inp in inputs:
inp_node = debug_graphs.get_node_name(inp)
inp_output_slot = debug_graphs.get_output_slot(inp)
# Inputs from Enter and NextIteration nodes are not validated because
# DebugNodeInserter::InsertNodes() in the debugger core skips creating
# control edges from debug ops watching these types of nodes.
if (inp_node in self._debug_watches[device_name] and
inp_output_slot in self._debug_watches[device_name][inp_node] and
debug_graph.node_op_types.get(inp) not in (
"Enter", "NextIteration") and
(inp_node, inp_output_slot) not in pending_inputs[node]):
pending_inputs[node].append((inp_node, inp_output_slot))
for i, datum in enumerate(self._dump_tensor_data[device_name]):
node = datum.node_name
slot = datum.output_slot
# In some cases (e.g., system clocks with insufficient precision),
# the upstream and downstream tensors may have identical timestamps, the
# following check examines this possibility and avoids raising an error if
# that is the case.
if not self._satisfied_at_timestamp(
device_name, pending_inputs[node], datum.timestamp, start_i=i + 1):
raise ValueError("Causality violated in timing relations of debug "
"dumps: %s (%d): "
"these input(s) are not satisfied: %s" %
(node, datum.timestamp, repr(pending_inputs[node])))
recipients = debug_graph.node_recipients[node]
for recipient in recipients:
recipient_pending_inputs = pending_inputs[recipient]
if (node, slot) in recipient_pending_inputs:
if self.node_op_type(recipient) == "Merge":
# If this is a Merge op, we automatically clear the list because
# a Merge node only requires one of its two inputs.
del recipient_pending_inputs[:]
else:
del recipient_pending_inputs[
recipient_pending_inputs.index((node, slot))]
def _satisfied_at_timestamp(self, device_name, pending, timestamp, start_i=0):
"""Determine whether pending inputs are satisfied at given timestamp.
Note: This method mutates the input argument "pending".
Args:
device_name: (str) device name.
pending: A list of 2-tuple (node_name, output_slot): the dependencies to
check.
timestamp: (int) the timestamp in question.
start_i: (int) the index in self._dump_tensor_data to start searching for
the timestamp.
Returns:
(bool) Whether all the dependencies in pending are satisfied at the
timestamp. If pending is empty to begin with, return True.
"""
if not pending:
return True
for datum in self._dump_tensor_data[device_name][start_i:]:
if datum.timestamp > timestamp:
break
if (datum.timestamp == timestamp and
(datum.node_name, datum.output_slot) in pending):
pending.remove((datum.node_name, datum.output_slot))
if not pending:
return True
return not pending
def loaded_partition_graphs(self):
"""Test whether partition graphs have been loaded."""
return bool(self._debug_graphs)
def partition_graphs(self):
"""Get the partition graphs.
Returns:
Partition graphs as a list of GraphDef.
Raises:
LookupError: If no partition graphs have been loaded.
"""
if not self._debug_graphs:
raise LookupError("No partition graphs have been loaded.")
return [self._debug_graphs[key].debug_graph_def
for key in self._debug_graphs]
def reconstructed_non_debug_partition_graphs(self):
"""Reconstruct partition graphs with the debugger-inserted ops stripped.
The reconstructed partition graphs are identical to the original (i.e.,
non-debugger-decorated) partition graphs except in the following respects:
1) The exact names of the runtime-inserted internal nodes may differ.
These include _Send, _Recv, _HostSend, _HostRecv, _Retval ops.
2) As a consequence of 1, the nodes that receive input directly from such
send- and recv-type ops will have different input names.
3) The parallel_iteration attribute of while-loop Enter ops are set to 1.
Returns:
A dict mapping device names (`str`s) to reconstructed
`tf.compat.v1.GraphDef`s.
"""
non_debug_graphs = {}
for key in self._debug_graphs:
non_debug_graphs[key] = self._debug_graphs[key].non_debug_graph_def
return non_debug_graphs
@property
def run_fetches_info(self):
"""Get a str representation of the fetches used in the Session.run() call.
Returns:
If the information is available from one `Session.run` call, a `str`
obtained from `repr(fetches)`.
If the information is available from multiple `Session.run` calls, a
`list` of `str` from `repr(fetches)`.
If the information is not available, `None`.
"""
output = self._run_fetches_info
return output[0] if len(output) == 1 else output
@property
def run_feed_keys_info(self):
"""Get a str representation of the feed_dict used in the Session.run() call.
Returns:
If the information is available from one `Session.run` call, a `str`
obtained from `repr(feed_dict)`.
If the information is available from multiple `Session.run` calls, a
`list` of `str` obtained from `repr(feed_dict)`.
If the information is not available, `None`.
"""
output = self._run_feed_keys_info
return output[0] if len(output) == 1 else output
def _infer_device_name(self, device_name, node_name):
"""Infer the device name given node name.
If device_name is provided (i.e., not None), it'll be simply returned right
away.
Args:
device_name: (str or None) name of the device. If None, will try to infer
the device name by looking at the available nodes.
node_name: (str) name of the node.
Returns:
(str) Inferred name of the device, if available.
Raises:
ValueError: If the node name does not exist on any of the available
devices or if there are multiple devices that contain the node with
the given name.