-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprofiling.py
104 lines (87 loc) · 3.51 KB
/
profiling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data structures and algorithms for profiling information."""
import os
class ProfileDatum(object):
"""Profile data point."""
def __init__(self,
device_name,
node_exec_stats,
file_path,
line_number,
func_name,
op_type):
"""Constructor.
Args:
device_name: (string) name of the device.
node_exec_stats: `NodeExecStats` proto.
file_path: path to the source file involved in creating the op.
line_number: line number in the file involved in creating the op.
func_name: name of the function that the line belongs to.
op_type: (string) Operation type.
"""
self.device_name = device_name
self.node_exec_stats = node_exec_stats
self.file_path = file_path
self.line_number = line_number
self.func_name = func_name
if self.file_path:
self.file_line_func = "%s:%d(%s)" % (
os.path.basename(self.file_path), self.line_number, self.func_name)
else:
self.file_line_func = ""
self.op_type = op_type
self.start_time = self.node_exec_stats.all_start_micros
self.op_time = (self.node_exec_stats.op_end_rel_micros -
self.node_exec_stats.op_start_rel_micros)
@property
def exec_time(self):
"""Op execution time plus pre- and post-processing."""
return self.node_exec_stats.all_end_rel_micros
class AggregateProfile(object):
"""Profile summary data for aggregating a number of ProfileDatum."""
def __init__(self, profile_datum):
"""Constructor.
Args:
profile_datum: (`ProfileDatum`) an instance of `ProfileDatum` to
initialize this object with.
"""
self.total_op_time = profile_datum.op_time
self.total_exec_time = profile_datum.exec_time
device_and_node = "%s:%s" % (profile_datum.device_name,
profile_datum.node_exec_stats.node_name)
self._node_to_exec_count = {device_and_node: 1}
def add(self, profile_datum):
"""Accumulate a new instance of ProfileDatum.
Args:
profile_datum: (`ProfileDatum`) an instance of `ProfileDatum` to
accumulate to this object.
"""
self.total_op_time += profile_datum.op_time
self.total_exec_time += profile_datum.exec_time
device_and_node = "%s:%s" % (profile_datum.device_name,
profile_datum.node_exec_stats.node_name)
device_and_node = "%s:%s" % (profile_datum.device_name,
profile_datum.node_exec_stats.node_name)
if device_and_node in self._node_to_exec_count:
self._node_to_exec_count[device_and_node] += 1
else:
self._node_to_exec_count[device_and_node] = 1
@property
def node_count(self):
return len(self._node_to_exec_count)
@property
def node_exec_count(self):
return sum(self._node_to_exec_count.values())