-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsession_debug_testlib.py
1566 lines (1264 loc) · 63.2 KB
/
session_debug_testlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for debugger functionalities in tf.Session."""
import collections
import functools
import glob
import os
import tempfile
import threading
import numpy as np
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.core.util import event_pb2
from tensorflow.python.client import session
from tensorflow.python.debug.lib import debug_data
from tensorflow.python.debug.lib import debug_graphs
from tensorflow.python.debug.lib import debug_utils
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.lib.io import file_io
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import cond as tf_cond
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.ops import rnn
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_v1
from tensorflow.python.ops import variables
from tensorflow.python.ops import while_loop
import tensorflow.python.ops.tensor_array_grad # pylint: disable=unused-import
from tensorflow.python.platform import googletest
from tensorflow.python.platform import test
from tensorflow.python.training import gradient_descent
def no_rewrite_session_config():
rewriter_config = rewriter_config_pb2.RewriterConfig(
disable_model_pruning=True,
arithmetic_optimization=rewriter_config_pb2.RewriterConfig.OFF,
dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF)
graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
return config_pb2.ConfigProto(graph_options=graph_options)
class _RNNCellForTest(rnn_cell_impl.RNNCell):
"""RNN cell for testing."""
def __init__(self, input_output_size, state_size):
self._input_output_size = input_output_size
self._state_size = state_size
self._w = variable_v1.VariableV1(1.0, dtype=dtypes.float32, name="w")
@property
def output_size(self):
return self._input_output_size
@property
def state_size(self):
return self._state_size
def __call__(self, input_, state, scope=None):
return (math_ops.multiply(self._w, input_), state)
@test_util.run_v1_only("b/120545219")
class SessionDebugTestBase(test_util.TensorFlowTestCase):
"""Base class for unit tests of tfdbg running with tf.Session."""
@classmethod
def setUpClass(cls):
if test.is_gpu_available():
cls._expected_partition_graph_count = 2
cls._expected_num_devices = 2
gpu_name = test_util.gpu_device_name()
cls._main_device = "/job:localhost/replica:0/task:0" + gpu_name
else:
cls._expected_partition_graph_count = 1
cls._expected_num_devices = 1
cls._main_device = "/job:localhost/replica:0/task:0/device:CPU:0"
@classmethod
def tearDownClass(cls):
pass
def setUp(self):
self._dump_root = tempfile.mkdtemp()
def tearDown(self):
ops.reset_default_graph()
# Tear down temporary dump directory.
if os.path.isdir(self._dump_root):
file_io.delete_recursively(self._dump_root)
def _debug_urls(self, run_number=None):
raise NotImplementedError(
"_debug_urls() method is not implemented in the base test class.")
def _debug_dump_dir(self, run_number=None):
raise NotImplementedError(
"_debug_dump_dir() method is not implemented in the base test class.")
def _debug_run_and_get_dump(self,
sess,
fetches,
feed_dict=None,
debug_ops="DebugIdentity",
tolerate_debug_op_creation_failures=False,
global_step=-1,
validate=True,
expected_partition_graph_count=None):
"""Run fetches with debugging and obtain DebugDumpDir.
Args:
sess: the tf.compat.v1.Session to be used.
fetches: fetches of the Session.run().
feed_dict: feed dict for the Session.run().
debug_ops: name(s) of the debug ops to be used.
tolerate_debug_op_creation_failures: whether to tolerate debug op
creation failures.
global_step: Optional global step.
validate: whether to validate dumped tensors against graph.
expected_partition_graph_count: optional count of partition graphs to
assert on.
Returns:
1. Return values of the Session.run().
2. The DebugDumpDir object from the debugged run().
"""
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=debug_ops,
debug_urls=self._debug_urls(),
tolerate_debug_op_creation_failures=tolerate_debug_op_creation_failures,
global_step=global_step)
run_metadata = config_pb2.RunMetadata()
run_output = sess.run(fetches,
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
if expected_partition_graph_count is not None:
self.assertEqual(expected_partition_graph_count,
len(run_metadata.partition_graphs))
return run_output, debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs,
validate=validate)
def _generate_dump_from_simple_addition_graph(self):
with session.Session(config=no_rewrite_session_config()) as sess:
u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]])
v_init_val = np.array([[2.0], [-1.0]])
# Use node names with overlapping namespace (i.e., parent directory) to
# test concurrent, non-racing directory creation.
u_name = "u"
v_name = "v"
w_name = "w"
u_init = constant_op.constant(u_init_val, shape=[2, 2])
u = variable_v1.VariableV1(u_init, name=u_name)
v_init = constant_op.constant(v_init_val, shape=[2, 1])
v = variable_v1.VariableV1(v_init, name=v_name)
w = math_ops.matmul(u, v, name=w_name)
u.initializer.run()
v.initializer.run()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_urls = "file://%s" % self._dump_root
# Add debug tensor watch for u.
debug_utils.add_debug_tensor_watch(
run_options, "%s/read" % u_name, 0, debug_urls=debug_urls)
# Add debug tensor watch for v.
debug_utils.add_debug_tensor_watch(
run_options, "%s/read" % v_name, 0, debug_urls=debug_urls)
run_metadata = config_pb2.RunMetadata()
# Invoke Session.run().
sess.run(w, options=run_options, run_metadata=run_metadata)
self.assertEqual(self._expected_partition_graph_count,
len(run_metadata.partition_graphs))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
simple_add_results = collections.namedtuple("SimpleAddResults", [
"u_init_val", "v_init_val", "u", "v", "w", "u_name", "v_name", "w_name",
"dump"
])
return simple_add_results(u_init_val, v_init_val, u, v, w, u_name, v_name,
w_name, dump)
def testCopyNodesHaveCorrectDebugOpsAndURLsAttributeValues(self):
with session.Session() as sess:
u = variable_v1.VariableV1(2.1, name="u")
v = variable_v1.VariableV1(20.0, name="v")
w = math_ops.multiply(u, v, name="w")
sess.run(variables.global_variables_initializer())
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_urls = self._debug_urls()
debug_utils.add_debug_tensor_watch(
run_options,
"u",
0, ["DebugNumericSummary(gated_grpc=True)", "DebugIdentity"],
debug_urls=debug_urls)
debug_utils.add_debug_tensor_watch(
run_options, "v", 0, ["DebugNumericSummary"], debug_urls=debug_urls)
run_metadata = config_pb2.RunMetadata()
r = sess.run(w, options=run_options, run_metadata=run_metadata)
self.assertAllClose(42.0, r)
u_copy_node_def = None
v_copy_node_def = None
for partition_graph in run_metadata.partition_graphs:
for node_def in partition_graph.node:
if debug_graphs.is_copy_node(node_def.name):
if node_def.name == "__copy_u_0":
u_copy_node_def = node_def
elif node_def.name == "__copy_v_0":
v_copy_node_def = node_def
self.assertIsNotNone(u_copy_node_def)
debug_ops_spec = u_copy_node_def.attr["debug_ops_spec"].list.s
self.assertEqual(2, len(debug_ops_spec))
self.assertEqual("DebugNumericSummary;%s;1" % debug_urls[0],
debug_ops_spec[0].decode("utf-8"))
self.assertEqual("DebugIdentity;%s;0" % debug_urls[0],
debug_ops_spec[1].decode("utf-8"))
self.assertIsNotNone(v_copy_node_def)
debug_ops_spec = v_copy_node_def.attr["debug_ops_spec"].list.s
self.assertEqual(1, len(debug_ops_spec))
self.assertEqual("DebugNumericSummary;%s;0" % debug_urls[0],
debug_ops_spec[0].decode("utf-8"))
def testConcurrentDumpingToPathsWithOverlappingParentDirsWorks(self):
results = self._generate_dump_from_simple_addition_graph()
self.assertTrue(results.dump.loaded_partition_graphs())
# Since global_step is not explicitly specified, it should take its default
# value: -1.
self.assertEqual(-1, results.dump.core_metadata.global_step)
self.assertGreaterEqual(results.dump.core_metadata.session_run_index, 0)
self.assertGreaterEqual(results.dump.core_metadata.executor_step_index, 0)
self.assertEqual([], results.dump.core_metadata.input_names)
self.assertEqual([results.w.name], results.dump.core_metadata.output_names)
self.assertEqual([], results.dump.core_metadata.target_nodes)
# Verify the dumped tensor values for u and v.
self.assertEqual(2, results.dump.size)
self.assertAllClose([results.u_init_val],
results.dump.get_tensors("%s/read" % results.u_name, 0,
"DebugIdentity"))
self.assertAllClose([results.v_init_val],
results.dump.get_tensors("%s/read" % results.v_name, 0,
"DebugIdentity"))
self.assertGreaterEqual(
results.dump.get_rel_timestamps("%s/read" % results.u_name, 0,
"DebugIdentity")[0], 0)
self.assertGreaterEqual(
results.dump.get_rel_timestamps("%s/read" % results.v_name, 0,
"DebugIdentity")[0], 0)
self.assertGreater(
results.dump.get_dump_sizes_bytes("%s/read" % results.u_name, 0,
"DebugIdentity")[0], 0)
self.assertGreater(
results.dump.get_dump_sizes_bytes("%s/read" % results.v_name, 0,
"DebugIdentity")[0], 0)
def testGetOpTypeWorks(self):
results = self._generate_dump_from_simple_addition_graph()
self.assertEqual(results.u.op.type,
results.dump.node_op_type(results.u_name))
self.assertIn(results.v.op.type, results.dump.node_op_type(results.v_name))
self.assertIn(results.w.op.type, results.dump.node_op_type(results.w_name))
with self.assertRaisesRegexp(
ValueError, r"None of the .* device\(s\) has a node named "):
results.dump.node_op_type("foo_bar")
def testDumpStringTensorsWorks(self):
with session.Session(config=no_rewrite_session_config()) as sess:
str1_init_val = np.array(b"abc")
str2_init_val = np.array(b"def")
str1_init = constant_op.constant(str1_init_val)
str2_init = constant_op.constant(str2_init_val)
str1_name = "str1"
str2_name = "str2"
str1 = variable_v1.VariableV1(str1_init, name=str1_name)
str2 = variable_v1.VariableV1(str2_init, name=str2_name)
# Concatenate str1 and str2
str_concat = math_ops.add(str1, str2, name="str_concat")
str1.initializer.run()
str2.initializer.run()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_urls = self._debug_urls()
# Add debug tensor watch for u.
debug_utils.add_debug_tensor_watch(
run_options, "%s/read" % str1_name, 0, debug_urls=debug_urls)
# Add debug tensor watch for v.
debug_utils.add_debug_tensor_watch(
run_options, "%s/read" % str2_name, 0, debug_urls=debug_urls)
run_metadata = config_pb2.RunMetadata()
sess.run(str_concat, options=run_options, run_metadata=run_metadata)
# String ops are located on CPU.
self.assertEqual(1, len(run_metadata.partition_graphs))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertIn(str1_name, dump.nodes())
self.assertIn(str2_name, dump.nodes())
self.assertEqual(2, dump.size)
self.assertEqual([str1_init_val],
dump.get_tensors("%s/read" % str1_name, 0,
"DebugIdentity"))
self.assertEqual([str2_init_val],
dump.get_tensors("%s/read" % str2_name, 0,
"DebugIdentity"))
self.assertGreaterEqual(
dump.get_rel_timestamps("%s/read" % str1_name, 0, "DebugIdentity")[0],
0)
self.assertGreaterEqual(
dump.get_rel_timestamps("%s/read" % str2_name, 0, "DebugIdentity")[0],
0)
self.assertGreater(
dump.get_dump_sizes_bytes("%s/read" % str1_name, 0,
"DebugIdentity")[0], 0)
self.assertGreater(
dump.get_dump_sizes_bytes("%s/read" % str2_name, 0,
"DebugIdentity")[0], 0)
def testDumpUninitializedVariable(self):
op_namespace = "testDumpUninitializedVariable"
with session.Session() as sess:
u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]])
s_init_val = b"str1"
u_name = "%s/u" % op_namespace
s_name = "%s/s" % op_namespace
u_init = constant_op.constant(u_init_val, shape=[2, 2])
u = variable_v1.VariableV1(u_init, name=u_name)
s_init = constant_op.constant(s_init_val)
s = variable_v1.VariableV1(s_init, name=s_name)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_urls = self._debug_urls()
# Add debug tensor watch for u.
debug_utils.add_debug_tensor_watch(
run_options, u_name, 0, debug_urls=debug_urls)
debug_utils.add_debug_tensor_watch(
run_options, s_name, 0, debug_urls=debug_urls)
run_metadata = config_pb2.RunMetadata()
# Initialize u and s.
sess.run(variables.global_variables_initializer(),
options=run_options,
run_metadata=run_metadata)
# Verify the dump file for the uninitialized value of u.
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertEqual(2, dump.size)
self.assertEqual(self._expected_partition_graph_count,
len(run_metadata.partition_graphs))
# Verify that the variable is properly initialized by the run() call.
u_vals = dump.get_tensors(u_name, 0, "DebugIdentity")
s_vals = dump.get_tensors(s_name, 0, "DebugIdentity")
self.assertEqual(1, len(u_vals))
self.assertIsInstance(u_vals[0], debug_data.InconvertibleTensorProto)
self.assertFalse(u_vals[0].initialized)
self.assertEqual(1, len(s_vals))
self.assertIsInstance(s_vals[0], debug_data.InconvertibleTensorProto)
self.assertFalse(s_vals[0].initialized)
# Call run() again, to check that u is initialized properly.
self.assertAllClose(u_init_val, sess.run(u))
self.assertEqual(s_init_val, sess.run(s))
def testDebugWhileLoopGeneratesMultipleDumps(self):
with session.Session(config=no_rewrite_session_config()) as sess:
num_iter = 10
# "u" is the Variable being updated in the loop.
u_name = "testDumpToFileWhileLoop/u"
u_namespace = u_name.split("/")[0]
u_init_val = np.array(11.0)
u_init = constant_op.constant(u_init_val)
u = variable_v1.VariableV1(u_init, name=u_name)
# "v" is the increment.
v_name = "testDumpToFileWhileLoop/v"
v_namespace = v_name.split("/")[0]
v_init_val = np.array(2.0)
v_init = constant_op.constant(v_init_val)
v = variable_v1.VariableV1(v_init, name=v_name)
u.initializer.run()
v.initializer.run()
i = constant_op.constant(0, name="testDumpToFileWhileLoop/i")
def cond(i):
return math_ops.less(i, num_iter)
def body(i):
new_u = state_ops.assign_add(u, v)
new_i = math_ops.add(i, 1)
op = control_flow_ops.group(new_u)
new_i = control_flow_ops.with_dependencies([op], new_i)
return [new_i]
loop = while_loop.while_loop(cond, body, [i], parallel_iterations=10)
# Create RunOptions for debug-watching tensors
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_urls = self._debug_urls()
# Add debug tensor watch for u.
debug_utils.add_debug_tensor_watch(
run_options, u_name, 0, debug_urls=debug_urls)
# Add debug tensor watch for v.
debug_utils.add_debug_tensor_watch(
run_options, "%s/read" % v_name, 0, debug_urls=debug_urls)
# Add debug tensor watch for while/Identity.
debug_utils.add_debug_tensor_watch(
run_options, "while/Identity", 0, debug_urls=debug_urls)
# Add debug tensor watch for while/Add/y.
debug_utils.add_debug_tensor_watch(
run_options, "while/Add/y", 0, debug_urls=debug_urls)
run_metadata = config_pb2.RunMetadata()
r = sess.run(loop, options=run_options, run_metadata=run_metadata)
self.assertEqual(self._expected_partition_graph_count,
len(run_metadata.partition_graphs))
self.assertEqual(num_iter, r)
u_val_final = sess.run(u)
self.assertAllClose(u_init_val + num_iter * v_init_val, u_val_final)
# Verify dump files
self.assertTrue(os.path.isdir(self._dump_root))
u_glob_out = glob.glob(os.path.join(self._dump_root, "*", u_namespace))
v_glob_out = glob.glob(os.path.join(
self._dump_root, "*", v_namespace, "v"))
self.assertTrue(os.path.isdir(u_glob_out[0]))
self.assertTrue(os.path.isdir(v_glob_out[0]))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
# Expected dumped tensors: u, v/read, 10 iterations of while/Identity,
# and 10 iterations of while/Add/y.
self.assertEqual(1 + 1 + num_iter + num_iter, dump.size)
# Verify tensor values.
self.assertAllClose([u_init_val],
dump.get_tensors(u_name, 0, "DebugIdentity"))
self.assertAllClose([v_init_val],
dump.get_tensors("%s/read" % v_name, 0,
"DebugIdentity"))
while_id_tensors = dump.get_tensors("while/Identity", 0, "DebugIdentity")
self.assertEqual(10, len(while_id_tensors))
for k in range(len(while_id_tensors)):
self.assertAllClose(np.array(k), while_id_tensors[k])
# Verify ascending timestamps from the while loops.
while_id_rel_timestamps = dump.get_rel_timestamps("while/Identity", 0,
"DebugIdentity")
while_id_dump_sizes_bytes = dump.get_dump_sizes_bytes("while/Identity", 0,
"DebugIdentity")
self.assertEqual(10, len(while_id_rel_timestamps))
prev_rel_time = 0
prev_dump_size_bytes = while_id_dump_sizes_bytes[0]
for rel_time, dump_size_bytes in zip(while_id_rel_timestamps,
while_id_dump_sizes_bytes):
self.assertGreaterEqual(rel_time, prev_rel_time)
self.assertEqual(dump_size_bytes, prev_dump_size_bytes)
prev_rel_time = rel_time
prev_dump_size_bytes = dump_size_bytes
# Test querying debug watch keys from node name.
watch_keys = dump.debug_watch_keys("while/Identity")
self.assertEqual(["while/Identity:0:DebugIdentity"], watch_keys)
# Test querying debug datum instances from debug watch key.
self.assertEqual(10, len(dump.watch_key_to_data(watch_keys[0])))
self.assertEqual([], dump.watch_key_to_data("foo"))
def testDebugWhileLoopWatchingWholeGraphWorks(self):
with session.Session() as sess:
loop_body = lambda i: math_ops.add(i, 2)
loop_cond = lambda i: math_ops.less(i, 16)
i = constant_op.constant(10, name="i")
loop = while_loop.while_loop(loop_cond, loop_body, [i])
loop_result, dump = self._debug_run_and_get_dump(sess, loop)
self.assertEqual(16, loop_result)
self.assertEqual(
[[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
self.assertEqual(
[[12], [14], [16]],
dump.get_tensors("while/NextIteration", 0, "DebugIdentity"))
def testDebugTrainingDynamicRNNWorks(self):
with session.Session() as sess:
input_size = 3
state_size = 2
time_steps = 4
batch_size = 2
input_values = np.random.randn(time_steps, batch_size, input_size)
sequence_length = np.random.randint(0, time_steps, size=batch_size)
concat_inputs = array_ops.placeholder(
dtypes.float32, shape=(time_steps, batch_size, input_size))
outputs_dynamic, _ = rnn.dynamic_rnn(
_RNNCellForTest(input_size, state_size),
inputs=concat_inputs,
sequence_length=sequence_length,
time_major=True,
dtype=dtypes.float32)
toy_loss = math_ops.reduce_sum(outputs_dynamic * outputs_dynamic)
train_op = gradient_descent.GradientDescentOptimizer(
learning_rate=0.1).minimize(toy_loss, name="train_op")
sess.run(variables.global_variables_initializer())
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph_with_denylists(
run_options,
sess.graph,
node_name_regex_denylist="(.*rnn/while/.*|.*TensorArray.*)",
debug_urls=self._debug_urls())
# b/36870549: Nodes with these name patterns need to be excluded from
# tfdbg in order to prevent MSAN warnings of uninitialized Tensors
# under both file:// and grpc:// debug URL schemes.
run_metadata = config_pb2.RunMetadata()
sess.run(train_op, feed_dict={concat_inputs: input_values},
options=run_options, run_metadata=run_metadata)
debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
def testDebugCondWatchingWholeGraphWorks(self):
with session.Session() as sess:
x = variable_v1.VariableV1(10.0, name="x")
y = variable_v1.VariableV1(20.0, name="y")
cond = tf_cond.cond(
x > y, lambda: math_ops.add(x, 1), lambda: math_ops.add(y, 1))
sess.run(variables.global_variables_initializer())
cond_result, dump = self._debug_run_and_get_dump(sess, cond)
self.assertEqual(21, cond_result)
self.assertAllClose(
[21.0], dump.get_tensors("cond/Merge", 0, "DebugIdentity"))
def testFindNodesWithBadTensorValues(self):
with session.Session() as sess:
u_name = "testFindNodesWithBadTensorValues/u"
v_name = "testFindNodesWithBadTensorValues/v"
w_name = "testFindNodesWithBadTensorValues/w"
x_name = "testFindNodesWithBadTensorValues/x"
y_name = "testFindNodesWithBadTensorValues/y"
z_name = "testFindNodesWithBadTensorValues/z"
u_init = constant_op.constant([2.0, 4.0])
u = variable_v1.VariableV1(u_init, name=u_name)
v_init = constant_op.constant([2.0, 1.0])
v = variable_v1.VariableV1(v_init, name=v_name)
# Expected output: [0.0, 3.0]
w = math_ops.subtract(u, v, name=w_name)
# Expected output: [inf, 1.3333]
x = math_ops.div(u, w, name=x_name)
# Expected output: [nan, 4.0]
y = math_ops.multiply(w, x, name=y_name)
z = math_ops.multiply(y, y, name=z_name)
u.initializer.run()
v.initializer.run()
_, dump = self._debug_run_and_get_dump(
sess, z,
expected_partition_graph_count=self._expected_partition_graph_count)
def has_bad_value(_, tensor):
return np.any(np.isnan(tensor)) or np.any(np.isinf(tensor))
# Find all "offending tensors".
bad_data = dump.find(has_bad_value)
# Verify that the nodes with bad values are caught through running find
# on the debug dump.
self.assertLessEqual(3, len(bad_data))
node_names = [datum.node_name for datum in bad_data]
self.assertIn(x_name, node_names)
self.assertIn(y_name, node_names)
self.assertIn(z_name, node_names)
# Test first_n kwarg of find(): Find the first offending tensor.
first_bad_datum = dump.find(has_bad_value, first_n=1)
self.assertEqual(1, len(first_bad_datum))
def testFindInfOrNanWithOpNameExclusion(self):
with session.Session() as sess:
u_name = "testFindInfOrNanWithOpNameExclusion/u"
v_name = "testFindInfOrNanWithOpNameExclusion/v"
w_name = "testFindInfOrNanWithOpNameExclusion/w"
x_name = "testFindInfOrNanWithOpNameExclusion/x"
y_name = "testFindInfOrNanWithOpNameExclusion/y"
z_name = "testFindInfOrNanWithOpNameExclusion/z"
u_init = constant_op.constant([2.0, 4.0])
u = variable_v1.VariableV1(u_init, name=u_name)
v_init = constant_op.constant([2.0, 1.0])
v = variable_v1.VariableV1(v_init, name=v_name)
# Expected output: [0.0, 3.0]
w = math_ops.subtract(u, v, name=w_name)
# Expected output: [inf, 1.3333]
x = math_ops.div(u, w, name=x_name)
# Expected output: [nan, 4.0]
y = math_ops.multiply(w, x, name=y_name)
z = math_ops.multiply(y, y, name=z_name)
u.initializer.run()
v.initializer.run()
_, dump = self._debug_run_and_get_dump(
sess, z,
expected_partition_graph_count=self._expected_partition_graph_count)
# Find all "offending tensors".
bad_data = dump.find(debug_data.has_inf_or_nan,
exclude_node_names=".*/x$")
# Verify that the nodes with bad values are caught through running find
# on the debug dump.
self.assertLessEqual(2, len(bad_data))
# Assert that the node `x` should have been excluded.
node_names = [datum.node_name for datum in bad_data]
self.assertIn(y_name, node_names)
self.assertIn(z_name, node_names)
first_bad_datum = dump.find(
debug_data.has_inf_or_nan, first_n=1, exclude_node_names=".*/x$")
self.assertEqual(1, len(first_bad_datum))
def _session_run_for_graph_structure_lookup(self):
with session.Session(config=no_rewrite_session_config()) as sess:
u_name = "testDumpGraphStructureLookup/u"
v_name = "testDumpGraphStructureLookup/v"
w_name = "testDumpGraphStructureLookup/w"
u_init = constant_op.constant([2.0, 4.0])
u = variable_v1.VariableV1(u_init, name=u_name)
v = math_ops.add(u, u, name=v_name)
w = math_ops.add(v, v, name=w_name)
u.initializer.run()
_, dump = self._debug_run_and_get_dump(
sess, w,
expected_partition_graph_count=self._expected_partition_graph_count)
return u_name, v_name, w_name, dump
def testGraphStructureLookupGivesDevicesAndNodesInfo(self):
u_name, _, _, dump = self._session_run_for_graph_structure_lookup()
# Test num_devices().
self.assertEqual(self._expected_num_devices, len(dump.devices()))
# Test node_device().
self.assertEqual(self._main_device, dump.node_device(u_name))
with self.assertRaisesRegexp(ValueError,
"does not exist in partition graphs"):
dump.node_device(u_name + "foo")
# Test node_exists().
self.assertTrue(dump.node_exists(u_name))
self.assertTrue(dump.node_exists(u_name + "/read"))
self.assertFalse(dump.node_exists(u_name + "/read" + "/foo"))
def testGraphStructureLookupGivesNodesAndAttributes(self):
u_name, _, _, dump = self._session_run_for_graph_structure_lookup()
u_read_name = u_name + "/read"
# Test node name list lookup of the DebugDumpDir object.
if test_util.gpu_device_name():
node_names = dump.nodes(
device_name="/job:localhost/replica:0/task:0/device:GPU:0")
else:
node_names = dump.nodes()
self.assertTrue(u_name in node_names)
self.assertTrue(u_read_name in node_names)
# Test querying node attributes.
u_attr = dump.node_attributes(u_name)
self.assertEqual(dtypes.float32, u_attr["dtype"].type)
self.assertEqual(1, len(u_attr["shape"].shape.dim))
self.assertEqual(2, u_attr["shape"].shape.dim[0].size)
with self.assertRaisesRegexp(
ValueError, r"None of the .* device\(s\) has a node named "):
dump.node_attributes("foo")
def testGraphStructureLookupGivesDebugWatchKeys(self):
u_name, v_name, w_name, dump = (
self._session_run_for_graph_structure_lookup())
# Test querying the debug watch keys with node names.
self.assertEqual(["%s:0:DebugIdentity" % u_name],
dump.debug_watch_keys(u_name))
self.assertEqual(["%s:0:DebugIdentity" % v_name],
dump.debug_watch_keys(v_name))
self.assertEqual(["%s:0:DebugIdentity" % w_name],
dump.debug_watch_keys(w_name))
self.assertEqual([], dump.debug_watch_keys("foo"))
# Test querying debug datum instances from debug watch.
u_data = dump.watch_key_to_data(dump.debug_watch_keys(u_name)[0])
self.assertEqual(1, len(u_data))
self.assertEqual(u_name, u_data[0].node_name)
self.assertEqual(0, u_data[0].output_slot)
self.assertEqual("DebugIdentity", u_data[0].debug_op)
self.assertGreaterEqual(u_data[0].timestamp, 0)
self.assertEqual([], dump.watch_key_to_data("foo"))
def testGraphStructureLookupGivesNodeInputsAndRecipients(self):
u_name, v_name, w_name, dump = (
self._session_run_for_graph_structure_lookup())
u_read_name = u_name + "/read"
# Test the inputs lookup of the DebugDumpDir object.
self.assertEqual([], dump.node_inputs(u_name))
self.assertEqual([u_name], dump.node_inputs(u_read_name))
self.assertEqual([u_read_name] * 2, dump.node_inputs(v_name))
self.assertEqual([v_name] * 2, dump.node_inputs(w_name))
self.assertEqual([], dump.node_inputs(u_name, is_control=True))
self.assertEqual([], dump.node_inputs(u_read_name, is_control=True))
self.assertEqual([], dump.node_inputs(v_name, is_control=True))
self.assertEqual([], dump.node_inputs(w_name, is_control=True))
# Test the outputs recipient lookup of the DebugDumpDir object.
self.assertTrue(u_read_name in dump.node_recipients(u_name))
self.assertEqual(2, dump.node_recipients(u_read_name).count(v_name))
self.assertEqual(2, dump.node_recipients(v_name).count(w_name))
self.assertEqual([], dump.node_recipients(u_name, is_control=True))
self.assertEqual([], dump.node_recipients(u_read_name, is_control=True))
self.assertEqual([], dump.node_recipients(v_name, is_control=True))
self.assertEqual([], dump.node_recipients(w_name, is_control=True))
# Test errors raised on invalid node names.
with self.assertRaisesRegexp(
ValueError, r"None of the .* device\(s\) has a node named "):
dump.node_inputs(u_name + "foo")
with self.assertRaisesRegexp(
ValueError, r"None of the .* device\(s\) has a node named "):
dump.node_recipients(u_name + "foo")
# Test transitive_inputs().
self.assertEqual([], dump.transitive_inputs(u_name))
self.assertEqual([u_name], dump.transitive_inputs(u_read_name))
self.assertEqual(
set([u_name, u_read_name]), set(dump.transitive_inputs(v_name)))
self.assertEqual(
set([u_name, u_read_name, v_name]), set(dump.transitive_inputs(w_name)))
with self.assertRaisesRegexp(
ValueError, r"None of the .* device\(s\) has a node named "):
dump.transitive_inputs(u_name + "foo")
def testGraphStructureLookupWithoutPartitionGraphsDoesNotErrorOut(self):
_, _, _, dump = self._session_run_for_graph_structure_lookup()
# Now load the dump again, without the partition graphs, so we can check
# errors are not raised because the partition graphs are loaded from the
# dump directory.
dump = debug_data.DebugDumpDir(self._dump_root, validate=False)
self.assertTrue(dump.loaded_partition_graphs())
def testGraphPathFindingOnControlEdgesWorks(self):
with session.Session(config=no_rewrite_session_config()) as sess:
v1 = variable_v1.VariableV1(1.0, name="v1")
v2 = variable_v1.VariableV1(2.0, name="v2")
v3 = variable_v1.VariableV1(3.0, name="v3")
a = math_ops.add(v1, v2, name="a")
with ops.control_dependencies([a]):
c = math_ops.subtract(v3, v3, name="c")
sess.run(variables.global_variables_initializer())
_, dump = self._debug_run_and_get_dump(sess, c)
self.assertEqual(["v1", "v1/read", "a", "c"],
dump.find_some_path("v1", "c"))
self.assertIsNone(dump.find_some_path("v1", "c", include_control=False))
def testGraphPathFindingReverseRefEdgeWorks(self):
with session.Session(config=no_rewrite_session_config()) as sess:
v = variable_v1.VariableV1(10.0, name="v")
delta = variable_v1.VariableV1(1.0, name="delta")
inc_v = state_ops.assign_add(v, delta, name="inc_v")
sess.run(variables.global_variables_initializer())
_, dump = self._debug_run_and_get_dump(sess, inc_v)
self.assertEqual(
["delta", "delta/read", "inc_v", "v"],
dump.find_some_path("delta", "v", include_reversed_ref=True))
self.assertIsNone(dump.find_some_path("delta", "v"))
def testCausalityCheckOnDumpsDetectsWrongTemporalOrder(self):
with session.Session(config=no_rewrite_session_config()) as sess:
u_name = "testDumpCausalityCheck/u"
v_name = "testDumpCausalityCheck/v"
w_name = "testDumpCausalityCheck/w"
u_init = constant_op.constant([2.0, 4.0])
u = variable_v1.VariableV1(u_init, name=u_name)
v = math_ops.add(u, u, name=v_name)
w = math_ops.add(v, v, name=w_name)
u.initializer.run()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugIdentity"],
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
sess.run(w, options=run_options, run_metadata=run_metadata)
self.assertEqual(self._expected_partition_graph_count,
len(run_metadata.partition_graphs))
# First, loading the original dump without supplying the
# partition_graphs should not cause a LookupError, validation occurs
# only with partition_graphs loaded.
debug_data.DebugDumpDir(self._dump_root)
# Now, loading the original dump with partition graphs supplied should
# succeed. The validation should pass quietly.
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
# Get the dump file names and compute their timestamps.
self.assertEqual(
1, len(dump.get_tensor_file_paths(v_name, 0, "DebugIdentity")))
v_file_path = dump.get_tensor_file_paths(v_name, 0, "DebugIdentity")[0]
self.assertEqual(
1, len(dump.get_tensor_file_paths(w_name, 0, "DebugIdentity")))
w_file_path = dump.get_tensor_file_paths(w_name, 0, "DebugIdentity")[0]
v_timestamp = int(v_file_path[v_file_path.rindex("_") + 1:])
w_timestamp = int(w_file_path[w_file_path.rindex("_") + 1:])
# Swap and slightly shift the time stamps of the last two dumped tensors,
# to simulate "causality violation", which can happen if the dump
# directory contains incomplete data and/or mixes data from different
# Session.run() calls.
v_file_path_1 = v_file_path[:v_file_path.rindex(
"_")] + "_%d" % w_timestamp
w_file_path_1 = w_file_path[:w_file_path.rindex("_")] + "_%d" % (
v_timestamp - 1)
os.rename(v_file_path, v_file_path_1)
os.rename(w_file_path, w_file_path_1)
# Load the dump directory again. Now a ValueError is expected to be
# raised due to the timestamp swap.
with self.assertRaisesRegexp(ValueError, "Causality violated"):
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
# Loading the dump directory with kwarg "validate" set explicitly to
# False should get rid of the error.
dump = debug_data.DebugDumpDir(
self._dump_root,
partition_graphs=run_metadata.partition_graphs,
validate=False)
# Next, set the two times stamps to be the same, which should be fine.
v_file_path_2 = v_file_path[:v_file_path.rindex(
"_")] + "_%d" % w_timestamp
w_file_path_2 = w_file_path[:w_file_path.rindex(
"_")] + "_%d" % w_timestamp
os.rename(v_file_path_1, v_file_path_2)
os.rename(w_file_path_1, w_file_path_2)
debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
def testWatchingOnlyOneOfTwoOutputSlotsDoesNotLeadToCausalityFailure(self):
with session.Session() as sess:
x_name = "oneOfTwoSlots/x"
u_name = "oneOfTwoSlots/u"
v_name = "oneOfTwoSlots/v"
w_name = "oneOfTwoSlots/w"
y_name = "oneOfTwoSlots/y"
x = variable_v1.VariableV1([1, 3, 3, 7], dtype=dtypes.int32, name=x_name)
sess.run(x.initializer)
unique_x, indices, _ = array_ops.unique_with_counts(x, name=u_name)
v = math_ops.add(unique_x, unique_x, name=v_name)
w = math_ops.add(indices, indices, name=w_name)
y = math_ops.add(w, w, name=y_name)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
# Watch only the first output slot of u, even though it has two output
# slots.
debug_utils.add_debug_tensor_watch(
run_options, u_name, 0, debug_urls=self._debug_urls())
debug_utils.add_debug_tensor_watch(
run_options, w_name, 0, debug_urls=self._debug_urls())
debug_utils.add_debug_tensor_watch(
run_options, y_name, 0, debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
sess.run([v, y], options=run_options, run_metadata=run_metadata)