-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvalues_test.py
774 lines (648 loc) · 28.4 KB
/
values_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the distributed values library."""
import copy
import os
from absl.testing import parameterized
import numpy as np
from tensorflow.core.protobuf import config_pb2
from tensorflow.python import tf2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.distribute import test_util as ds_test_util
from tensorflow.python.distribute import tpu_strategy
from tensorflow.python.distribute import tpu_values
from tensorflow.python.distribute import values as values_lib
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.eager import test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.training import saver as saver_lib
def _device_str(d):
return "/device:GPU:" + str(d)
def _nested_value(d):
return ("a" + d, ["b" + d, {"c": "d" + d, "e": "f" + d}, "g" + d], "h" + d)
def mirrored_and_tpu_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus_no_merge_call,
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_packed_var,
strategy_combinations.tpu_strategy_spmd,
],
mode=["graph", "eager"])
class DistributedValuesTest(test.TestCase, parameterized.TestCase):
@combinations.generate(
combinations.combine(
distribution=(strategy_combinations.all_strategies_minus_default +
strategy_combinations.multiworker_strategies),
mode=["eager"]
))
def testMakeDistributedValueFromTensor(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
single_value = constant_op.constant(1)
def value_fn(ctx):
del ctx
return single_value
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
self.assertAllEqual(
ds_test_util.gather(distribution, distributed_values),
constant_op.constant(1., shape=(distribution.num_replicas_in_sync)))
@combinations.generate(
combinations.combine(
distribution=(strategy_combinations.all_strategies_minus_default +
strategy_combinations.multiworker_strategies),
mode=["eager"]
))
def testMakeDistributedValueSingleNumpyArrayConstant(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
array_value = np.array([1., 2., 3.])
def value_fn(ctx):
del ctx
return array_value
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
self.assertAllEqual(
ds_test_util.gather(distribution, distributed_values).numpy(),
[[1., 2., 3.]] * distribution.num_replicas_in_sync)
@combinations.generate(
combinations.combine(
distribution=(strategy_combinations.all_strategies_minus_default +
strategy_combinations.multiworker_strategies),
mode=["eager"]
))
def testMakeDistributedValueTupleConstant(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
tuple_value = (1., 2., 3.)
def value_fn(ctx):
del ctx
return tuple_value
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
distributed_values = ds_test_util.gather(distribution, distributed_values)
# Expected output for 2 replicas:
# ([1.0, 1.0], [2.0, 2.0], [3.0, 3.0])
expected = tuple([v for i in range(distribution.num_replicas_in_sync)]
for v in tuple_value)
self.assertAllEqual(distributed_values, expected)
@combinations.generate(
combinations.combine(
distribution=(strategy_combinations.all_strategies_minus_default +
strategy_combinations.multiworker_strategies),
mode=["eager"]
))
def testMakeDistributedValueNestedStructurePerReplica(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
tuple_value = (1., 2., 3.)
def value_fn(ctx):
per_replica = []
for val in tuple_value:
per_replica.append(val * ctx.replica_id_in_sync_group)
return tuple(per_replica)
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
distributed_values = ds_test_util.gather(distribution, distributed_values)
# Expected output for 2 replicas:
# ([0.0, 1.0], [0.0, 2.0], [0.0, 3.0])
expected = tuple([v * i for i in range(distribution.num_replicas_in_sync)]
for v in tuple_value)
self.assertAllEqual(distributed_values, expected)
# NOTE(priyag): Cannot test this with MultiWorkerMirroredStrategy because
# collective ops do not support SparseTensors.
@combinations.generate(
combinations.combine(
distribution=strategy_combinations.all_strategies_minus_default,
mode=["eager"]
))
def testMakeDistributedValueSpareTensor(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
def value_fn(ctx):
del ctx
return sparse_tensor.SparseTensor(
indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
local_results = distribution.experimental_local_results(distributed_values)
for i in range(distribution.num_replicas_in_sync):
self.assertAllEqual(
sparse_ops.sparse_tensor_to_dense(local_results[i]),
[[1, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]])
@combinations.generate(
combinations.combine(
distribution=(strategy_combinations.all_strategies_minus_default +
strategy_combinations.multiworker_strategies),
mode=["eager"]
))
def testMakeDistributedValueExtractFromArray(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
multiple_values = range(distribution.num_replicas_in_sync)
def value_fn(ctx):
return multiple_values[ctx.replica_id_in_sync_group]
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
distributed_values = ds_test_util.gather(distribution, distributed_values)
expected = range(distribution.num_replicas_in_sync)
self.assertAllEqual(distributed_values, expected)
@combinations.generate(
combinations.combine(
distribution=(strategy_combinations.all_strategies_minus_default +
strategy_combinations.multiworker_strategies),
mode=["eager"]
))
def testMakeDistributedValueAndRun(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
@def_function.function
def run():
multiple_values = range(distribution.num_replicas_in_sync)
def value_fn(ctx):
return multiple_values[ctx.replica_id_in_sync_group]
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
def computation(x):
return math_ops.square(x)
outputs = ds_test_util.gather(
distribution,
distribution.run(computation, args=(distributed_values,)))
return outputs
results = run()
expected = [i**2 for i in range(distribution.num_replicas_in_sync)]
self.assertAllEqual(results, expected)
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations
.mirrored_strategy_with_two_gpus_no_merge_call,
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_packed_var,
strategy_combinations.central_storage_strategy_with_two_gpus,
] + strategy_combinations.multiworker_strategies,
mode=["eager"]))
def testMakeDistributedValueDefaultDevicePlacement(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
def value_fn(ctx):
del ctx
return constant_op.constant(1.0)
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
default_device = array_ops.identity(constant_op.constant(1.0)).device
for i in range(len(distribution.extended.worker_devices)):
self.assertAllEqual(distributed_values._values[i].device, default_device)
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations
.mirrored_strategy_with_two_gpus_no_merge_call,
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_packed_var,
strategy_combinations.central_storage_strategy_with_two_gpus,
] + strategy_combinations.multiworker_strategies,
mode=["eager"],
op_type=[constant_op.constant, array_ops.identity]))
def testMakeDistributedValueExplicitDevicePlacement(self, distribution,
op_type):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
worker_devices = distribution.extended.worker_devices
def value_fn(ctx):
# In multi client setup, worker_devices is just the devices on that
# worker.
worker_device_id = ctx.replica_id_in_sync_group % len(worker_devices)
with ops.device(worker_devices[worker_device_id]):
return op_type(1.0)
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
for i in range(len(distribution.extended.worker_devices)):
self.assertAllEqual(distributed_values._values[i].device,
worker_devices[i])
class PerReplicaTest(test.TestCase, parameterized.TestCase):
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations
.mirrored_strategy_with_two_gpus_no_merge_call,
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_packed_var,
strategy_combinations.central_storage_strategy_with_two_gpus,
] + strategy_combinations.multiworker_strategies,
mode=["eager"]))
def testUsePerReplicaInvalidContextGivesError(self, distribution):
if not tf2.enabled():
self.skipTest("Only V2 is supported.")
multiple_values = range(distribution.num_replicas_in_sync)
def value_fn(ctx):
return multiple_values[ctx.replica_id_in_sync_group]
distributed_values = (
distribution.experimental_distribute_values_from_function(value_fn))
with self.assertRaisesRegex(ValueError, "not inside a replica context"):
math_ops.cast(distributed_values, dtypes.float32)
class PerWorkerResourceTest(test.TestCase, parameterized.TestCase):
@combinations.generate(
combinations.combine(dataset_fn_as_tf_function=[True, False]))
def testMapFnTracing(self, dataset_fn_as_tf_function):
# For a PerWorkerResource to correctly behave when used in dataset.map,
# it has to be that the map_fn is not traced only once such that
# PerWorkerResource.local_table can return the correct resource. This test
# can detect the potential breakage of this behavior on TAP.
self._traced_once = 0
def map_fn(x):
self._traced_once += 1
return x
def dataset_fn():
dataset = dataset_ops.DatasetV2.from_tensors([0, 1, 2]).repeat().batch(
2, drop_remainder=True)
dataset = dataset.map(map_fn)
return dataset
datasets = []
number_of_input_pipelines = 5
if dataset_fn_as_tf_function:
dataset_fn = def_function.function(dataset_fn)
expected_tracing_times = 1
else:
expected_tracing_times = number_of_input_pipelines
for _ in range(number_of_input_pipelines):
datasets.append(dataset_fn())
self.assertEqual(self._traced_once, expected_tracing_times)
class DistributedDelegateTest(test.TestCase):
@test_util.run_in_graph_and_eager_modes
def testGetAttr(self):
class Foo(object):
def __init__(self, x):
self.x = x
v = values_lib.DistributedDelegate((Foo(7), Foo(8)))
self.assertEqual(7, v.x)
with self.assertRaises(AttributeError):
_ = v.y
@test_util.run_in_graph_and_eager_modes
def testOperatorOverride(self):
v = values_lib.DistributedDelegate((7, 8))
# v should act like int(7).
self.assertEqual(8, v + 1)
self.assertEqual(10, 3 + v)
self.assertEqual(14, v + v)
self.assertEqual(5, v - 2)
self.assertEqual(6, 13 - v)
self.assertEqual(0, v - v)
self.assertEqual(14, v * 2)
self.assertEqual(21, 3 * v)
self.assertEqual(49, v * v)
self.assertEqual(3.5, v / 2)
self.assertEqual(1.5, 10.5 / v)
self.assertEqual(3, v // 2)
self.assertEqual(2, 15 // v)
self.assertEqual(1, v % 2)
self.assertEqual(2, 16 % v)
# pylint: disable=g-generic-assert
self.assertTrue(v < 12)
self.assertTrue(v <= 12)
self.assertFalse(v > 12)
self.assertFalse(v >= 12)
self.assertFalse(12 < v)
self.assertFalse(12 <= v)
self.assertTrue(12 > v)
self.assertTrue(12 >= v)
# pylint: enable=g-generic-assert
self.assertEqual(3, v & 3)
self.assertEqual(3, 11 & v)
self.assertEqual(15, v | 8)
self.assertEqual(23, 16 | v)
self.assertEqual(4, v ^ 3)
self.assertEqual(12, 11 ^ v)
self.assertEqual(343, pow(v, 3))
self.assertEqual(3, pow(v, 3, 10))
self.assertEqual(128, pow(2, v))
self.assertEqual(-7, -v)
self.assertEqual(~7, ~v)
self.assertEqual(7, abs(v))
with self.assertRaises(TypeError):
_ = v[2]
@test_util.run_in_graph_and_eager_modes
def testCopy(self):
class Foo(object):
def __init__(self, x):
self.x = x
v = values_lib.DistributedDelegate((Foo(7), Foo(8)))
v_shallow_copy = copy.copy(v)
self.assertEqual(v.x, v_shallow_copy.x)
v_deep_copy = copy.deepcopy(v)
self.assertEqual(v.x, v_deep_copy.x)
_TPU_STRATEGIES = (tpu_strategy.TPUStrategy, tpu_strategy.TPUStrategyV1)
def _make_replica_local(method, strategy=None):
if strategy is None:
devices = ("/device:GPU:0", "/device:CPU:0")
else:
devices = strategy.extended.worker_devices
v = []
for d, n, init in zip(devices, ["v", "v/replica"], [1., 2.]):
with ops.device(d):
v.append(variable_scope.get_variable(
name=n, initializer=init, use_resource=True))
if (strategy is not None) and isinstance(strategy, _TPU_STRATEGIES):
var_cls = tpu_values.TPUSyncOnReadVariable
else:
var_cls = values_lib.SyncOnReadVariable
replica_local = var_cls(strategy, v, method)
return v, replica_local
class DistributedVariableTest(test.TestCase, parameterized.TestCase):
def _assign_replica_local(self, v, new):
for var, n in zip(v, new):
with ops.device(var.device):
self.evaluate(var.assign(n))
def _save_return_saver(self, sess, var):
saver = saver_lib.Saver(var_list=[var])
test_dir = self.get_temp_dir()
prefix = os.path.join(test_dir, "ckpt")
return saver.save(sess, prefix), saver
def _save(self, sess, var):
save_path, _ = self._save_return_saver(sess, var)
return save_path
config = config_pb2.ConfigProto()
config.allow_soft_placement = True
@test_util.run_in_graph_and_eager_modes(config=config)
def testProperties(self):
if context.num_gpus() < 1 and context.executing_eagerly():
self.skipTest("A GPU is not available for this test in eager mode.")
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.SUM)
self.assertEqual(v[0].constraint, replica_local.constraint)
self.assertEqual(v[0].name, replica_local.name)
self.assertEqual(v[0].dtype, replica_local.dtype)
self.assertEqual(v[0].shape, replica_local.shape)
self.assertEqual(variable_scope.VariableAggregation.SUM,
replica_local.aggregation)
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu
],
mode=["eager"]))
def testCanPassToDefFun(self, distribution):
@def_function.function
def add1(x):
return x + 1.
with distribution.scope():
v = variables_lib.Variable(
1.,
aggregation=variables_lib.VariableAggregation.MEAN,
synchronization=variables_lib.VariableSynchronization.ON_READ)
self.assertEqual(2., self.evaluate(add1(v)))
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testTensorConversion(self, distribution):
with context.graph_mode():
_, replica_local = _make_replica_local(
variable_scope.VariableAggregation.SUM, distribution)
converted = ops.convert_to_tensor(replica_local, as_ref=False)
self.assertIsInstance(converted, ops.Tensor)
self.assertEqual(converted.dtype, replica_local.dtype)
converted = ops.convert_to_tensor(replica_local, as_ref=True)
# Resources variable are converted to tensors as well when as_ref is True.
self.assertIsInstance(converted, ops.Tensor)
self.assertEqual(converted.dtype, replica_local.dtype)
@combinations.generate(combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus_no_merge_call,
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_packed_var,
], mode=["eager"]))
def testValueInCrossReplicaContext(self, distribution):
value_list, replica_local = _make_replica_local(
variable_scope.VariableAggregation.ONLY_FIRST_REPLICA, distribution)
self.assertIsInstance(replica_local.value(), ops.Tensor)
self.assertEqual(self.evaluate(replica_local.value()),
self.evaluate(value_list[0].value()))
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.tpu_strategy_packed_var,
],
mode=["eager"]))
def testValueInDefaultReplicaContext(self, distribution):
with distribution.scope():
v1 = variables_lib.Variable(
0.0,
aggregation=variables_lib.VariableAggregation.SUM,
synchronization=variables_lib.VariableSynchronization.ON_READ)
v2 = variables_lib.Variable(
0.0,
aggregation=variables_lib.VariableAggregation.SUM,
synchronization=variables_lib.VariableSynchronization.ON_READ)
@def_function.function
def replica_fn():
v1.assign_add(1.0)
v2.assign_add(2.0)
distribution.run(replica_fn)
sum_v = v1 + v2
self.assertEqual(sum_v, 6.0)
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.tpu_strategy_packed_var,
],
mode=["eager"]))
def testValueInFunctionCrossReplicaContext(self, distribution):
with distribution.scope():
v1 = variables_lib.Variable(
0.0,
aggregation=variables_lib.VariableAggregation.NONE,
synchronization=variables_lib.VariableSynchronization.ON_WRITE)
@def_function.function
def assign_fn():
v1.assign(1.0)
assign_fn()
self.assertEqual(v1, 1.0)
# Make sure the function graph has composite variable as inputs.
graph_def = assign_fn.get_concrete_function().graph.as_graph_def()
self.assertRegex(str(graph_def), "device:COMPOSITE:0")
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.tpu_strategy_packed_var,
],
mode=["eager"]))
def testReplicatedValueNameDeterministic(self, distribution):
with distribution.scope():
v1 = variables_lib.Variable(0.0, name="test_var_1")
v2 = variables_lib.Variable(0.0, name="test_var_2")
def fn():
v1.assign_add(1.0)
v2.assign_add(2.0)
return v1 + v2
@def_function.function
def dist_run_fn():
a = distribution.run(fn)
return a
concrete_fn = dist_run_fn.get_concrete_function()
inputs = concrete_fn.graph.inputs
self.assertLen(inputs, 2)
# Before cl/433948982, input name will include a non-deterministic uid,
# e.g. "test_var_1_139726389910864/handle/inputs_0:0"
self.assertEqual(inputs[0].name, "test_var_1/handle/inputs_0:0")
self.assertEqual(inputs[1].name, "test_var_2/handle/inputs_0:0")
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveAndRestoreReplicaLocalSumOneGraph(self, distribution):
with self.cached_session() as sess:
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.SUM, distribution)
# Overwrite the initial values.
self._assign_replica_local(v, [3., 4.])
with distribution.scope():
# Saves the current value of v[0] + v[1], 7.
save_path, saver = self._save_return_saver(sess, replica_local)
# Change the values between save and restore.
self._assign_replica_local(v, [5., 6.])
# Restores the saved value of 7. which gets divided equally
# between the variables.
saver.restore(sess, save_path)
self.assertEqual([3.5, 3.5], self.evaluate([v[0], v[1]]))
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveAndRestoreReplicaLocalMeanOneGraph(self, distribution):
if context.num_gpus() < 1 and context.executing_eagerly():
self.skipTest("A GPU is not available for this test in eager mode.")
with self.cached_session() as sess:
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.MEAN, distribution)
# Overwrite the initial values.
self._assign_replica_local(v, [3., 4.])
with distribution.scope():
# Saves the current value of (v[0] + v[1])/2, 3.5.
save_path, saver = self._save_return_saver(sess, replica_local)
# Change the values between save and restore.
self._assign_replica_local(v, [5., 6.])
# Restores the saved value of 3.5 to both variables.
saver.restore(sess, save_path)
self.assertEqual([3.5, 3.5], self.evaluate([v[0], v[1]]))
def _save_replica_local_mean(self, distribution):
"""Save variables with mirroring, returns save_path."""
with self.session(graph=ops.Graph()) as sess:
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.MEAN, distribution)
# Overwrite the initial values.
self._assign_replica_local(v, [3., 4.])
with distribution.scope():
# Saves the current value of (v[0] + v[1])/2, 3.5
save_path = self._save(sess, replica_local)
# Change the values between save and restore.
self._assign_replica_local(v, [5., 6.])
return save_path
def _save_replica_local_sum(self, distribution):
"""Save variables with mirroring, returns save_path."""
with self.session(graph=ops.Graph()) as sess:
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.SUM, distribution)
# Overwrite the initial values.
self._assign_replica_local(v, [1.5, 2.])
with distribution.scope():
# Saves the current value of v[0] + v[1], 3.5
save_path = self._save(sess, replica_local)
# Change the values between save and restore.
self._assign_replica_local(v, [5., 6.])
return save_path
def _save_normal(self):
"""Save variables without mirroring, returns save_path."""
with self.session(graph=ops.Graph()) as sess:
var = variable_scope.get_variable(
name="v", initializer=1., use_resource=True)
# Overwrite the initial value.
self.evaluate(var.assign(3.5))
# Saves the current value of var, 3.5.
save_path = self._save(sess, var)
# Change the values between save and restore.
self.evaluate(var.assign(5.))
return save_path
def _restore_normal(self, save_path):
"""Restore to variables without mirroring in a fresh graph."""
with self.session(graph=ops.Graph()) as sess:
var = variable_scope.get_variable(
name="v", initializer=7., use_resource=True)
# Overwrite the initial value.
self.evaluate(var.assign(8.))
# Restores the saved value of 3.5 to `var`.
saver = saver_lib.Saver(var_list=[var])
saver.restore(sess, save_path)
self.assertEqual(3.5, self.evaluate(var))
def _restore_replica_local_mean(self, save_path, distribution):
"""Restore to variables with mirroring in a fresh graph."""
with self.session(graph=ops.Graph()) as sess:
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.MEAN, distribution)
# Overwrite the initial values.
self._assign_replica_local(v, [7., 8.])
with distribution.scope():
# Restores the saved value of 3.5 to both variables.
saver = saver_lib.Saver(var_list=[replica_local])
saver.restore(sess, save_path)
self.assertEqual([3.5, 3.5], self.evaluate([v[0], v[1]]))
def _restore_replica_local_sum(self, save_path, distribution):
"""Restore to variables with mirroring in a fresh graph."""
with self.session(graph=ops.Graph()) as sess:
v, replica_local = _make_replica_local(
variable_scope.VariableAggregation.SUM, distribution)
# Overwrite the initial values.
self._assign_replica_local(v, [7., 8.])
with distribution.scope():
# Restores the saved value of 3.5 to both variables.
saver = saver_lib.Saver(var_list=[replica_local])
saver.restore(sess, save_path)
self.assertEqual([1.75, 1.75], self.evaluate([v[0], v[1]]))
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveReplicaLocalRestoreReplicaLocalMean(self, distribution):
save_path = self._save_replica_local_mean(distribution)
self._restore_replica_local_mean(save_path, distribution)
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveReplicaLocalRestoreReplicaLocalSum(self, distribution):
save_path = self._save_replica_local_sum(distribution)
self._restore_replica_local_sum(save_path, distribution)
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveReplicaLocalMeanRestoreNormal(self, distribution):
save_path = self._save_replica_local_mean(distribution)
self._restore_normal(save_path)
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveReplicaLocalSumRestoreNormal(self, distribution):
save_path = self._save_replica_local_sum(distribution)
self._restore_normal(save_path)
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveNormalRestoreReplicaLocalMean(self, distribution):
save_path = self._save_normal()
self._restore_replica_local_mean(save_path, distribution)
@combinations.generate(mirrored_and_tpu_strategy_combinations())
def testSaveNormalRestoreReplicaLocalSum(self, distribution):
save_path = self._save_normal()
self._restore_replica_local_sum(save_path, distribution)
if __name__ == "__main__":
ds_test_util.main()