-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcontext_test.py
217 lines (174 loc) · 7.72 KB
/
context_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import weakref
from absl.testing import parameterized
import numpy as np
from tensorflow.compiler.xla.service import hlo_pb2
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
class ContextTest(test.TestCase, parameterized.TestCase):
def testSetGlobalSeed(self):
c = context.Context()
c._set_global_seed(123)
for t in [np.int32, np.int64, np.uint32, np.uint64]:
c._set_global_seed(t(123))
c._set_global_seed(np.array(123, dtype=t))
c._set_global_seed(ops.convert_to_tensor(123, dtype=t))
def testContextIsDestroyedAfterTensors(self):
# Create a new context
new_context = context.Context()
weak_c = weakref.ref(new_context)
new_context.ensure_initialized()
# Create a tensor with the new context as default.
# Make sure to restore the original context.
original_context = context.context()
try:
context._set_context(new_context)
# Use a 2D tensor so that it is not cached.
tensor1 = constant_op.constant([[3.]])
# Produce a tensor as an operation output. This uses a different code path
# from tensors created from Python.
tensor2 = tensor1 * tensor1
context._set_context(original_context)
except:
context._set_context(original_context)
raise
# Deleting our context reference should not delete the underlying object.
del new_context
self.assertIsNot(weak_c(), None)
# Deleting the first tensor should not delete the context since there is
# another tensor.
del tensor1
self.assertIsNot(weak_c(), None)
# Deleting the last tensor should result in deleting its context.
del tensor2
self.assertIs(weak_c(), None)
def testSimpleGraphCollection(self):
@def_function.function
def f(x):
with ops.device('CPU:0'):
return x + constant_op.constant(1.)
with context.collect_graphs() as graphs:
with ops.device('CPU:0'):
x = constant_op.constant(1.)
f(x)
self.assertLen(graphs, 1)
graph, = graphs
self.assertIn('CPU:0', graph.node[1].device)
@test_util.disable_tfrt(
'b/171600738: tfrt does not support exporting post-optimization graph')
def testGraphCollectionAfterDevicePlacement(self):
@def_function.function
def f(x):
return x + constant_op.constant(1.)
with context.collect_graphs() as graphs:
with ops.device('CPU:0'):
f(constant_op.constant(1.))
self.assertLen(graphs, 1)
graph, = graphs
self.assertIn('CPU:0', graph.node[0].device)
def testGetFunctionDef(self):
@def_function.function
def f():
return constant_op.constant(1.)
concrete = f.get_concrete_function()
function_def = context.get_function_def(concrete.name)
self.assertIsNot(function_def, None)
found_const_node = False
for node_def in function_def.node_def:
if node_def.op == 'Const':
found_const_node = True
break
self.assertTrue(found_const_node)
with self.assertRaises(errors.NotFoundError):
_ = context.get_function_def('this_should_not_be_found')
@test_util.run_gpu_only
@test_util.disable_tfrt('b/169293680: TFE_GetTotalMemoryUsage is unsupported')
def testGetMemoryInfo(self):
array_ops.zeros([10]) # Allocate some memory on the GPU.
self.assertGreater(context.context().get_memory_info('GPU:0')['current'], 0)
@test_util.disable_tfrt('b/169293680: TFE_GetTotalMemoryUsage is unsupported')
def testGetMemoryInfoCPU(self):
if test_util.IsMklEnabled():
# TODO(gzmkl) work with Google team to address design issue in allocator.h
self.skipTest('MklCPUAllocator does not throw exception. So skip test.')
with self.assertRaisesRegex(ValueError, 'Allocator stats not available'):
context.context().get_memory_info('CPU:0')
@test_util.disable_tfrt('b/169293680: TFE_GetTotalMemoryUsage is unsupported')
def testGetMemoryInfoUnknownDevice(self):
with self.assertRaisesRegex(ValueError, 'No matching devices found'):
context.context().get_memory_info('unknown_device:0')
@test_util.disable_tfrt('b/169293680: TFE_GetTotalMemoryUsage is unsupported')
def testGetMemoryInfoUnparsableDevice(self):
with self.assertRaisesRegex(ValueError, 'Failed parsing device name'):
context.context().get_memory_info('GPU')
with self.assertRaisesRegex(ValueError, 'Failed parsing device name'):
context.context().get_memory_info('GPU:')
with self.assertRaisesRegex(ValueError, 'Failed parsing device name'):
context.context().get_memory_info('GPU:CPU')
def testListFunctionNames(self):
@def_function.function
def f():
return constant_op.constant(1.)
concrete = f.get_concrete_function()
self.assertIn(concrete.name.decode(),
context.context().list_function_names())
def testSetLogicalDeviceAfterContextInitialization(self):
ctx = context.Context()
ctx.set_logical_cpu_devices(4)
self.assertIs(len(ctx.list_logical_devices('CPU')), 4)
# Cannot set logical device twice.
with self.assertRaisesRegex(RuntimeError, 'Virtual CPUs already set'):
ctx.set_logical_cpu_devices(8)
def testSetLogicalLocalCpuDevice(self):
ctx = context.Context()
# Manually add a remote CPU device into logical device list.
ctx._logical_devices = [] # pylint: disable=protected-access
dev = context.LogicalDevice(name='/job:worker/replica:0/task:1',
device_type='CPU')
ctx._logical_devices.append(dev) # pylint: disable=protected-access
self.assertIs(len(ctx.list_logical_devices('CPU')), 1)
# This would pass the check since the previously added device is not local.
ctx.set_logical_cpu_devices(4)
# Logical device list would be overwritten after initialization.
self.assertIs(len(ctx.list_logical_devices('CPU')), 4)
@parameterized.named_parameters([(f'_{stage}', stage) for stage in [
'hlo', 'hlo_serialized', 'optimized_hlo', 'optimized_hlo_serialized',
'optimized_hlo_proto_serialized', 'optimized_hlo_dot'
]])
def testGetCompilerIr(self, stage):
@def_function.function(jit_compile=True)
def test_func(x):
return 2 * x
a = array_ops.ones((1000, 1000)) # 4 * 1000 * 1000 in bytes
result = test_func.experimental_get_compiler_ir(a)(stage=stage)
self.assertNotEmpty(result)
if stage == 'optimized_hlo_proto_serialized':
hlo_proto = hlo_pb2.HloProto.FromString(result)
allocations = hlo_proto.buffer_assignment.buffer_allocations
buffer_size = sum(
getattr(allocation, 'size') for allocation in allocations)
# The sizes of input and output are both 4 * 1000 * 1000 in bytes.
self.assertGreaterEqual(buffer_size, 2 * 4 * 1000 * 1000)
self.assertLess(buffer_size, 4 * 4 * 1000 * 1000)
if __name__ == '__main__':
ops.enable_eager_execution()
test.main()