-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexecute.py
329 lines (278 loc) · 11.3 KB
/
execute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions called by the generated code to execute an eager-mode op."""
from google.protobuf import text_format
from tensorflow.core.framework import tensor_pb2
from tensorflow.python import pywrap_tfe
from tensorflow.python.eager import core
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_conversion_registry
from tensorflow.python.framework import tensor_shape
from tensorflow.python.types import core as core_types
from tensorflow.python.util import compat
def quick_execute(op_name, num_outputs, inputs, attrs, ctx, name=None):
"""Execute a TensorFlow operation.
Args:
op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to
execute.
num_outputs: The number of outputs of the operation to fetch. (Explicitly
provided instead of being inferred for performance reasons).
inputs: A list of inputs to the operation. Each entry should be a Tensor, or
a value which can be passed to the Tensor constructor to create one.
attrs: A tuple with alternating string attr names and attr values for this
operation.
ctx: The value of context.context().
name: Customized name for the operation.
Returns:
List of output Tensor objects. The list is empty if there are no outputs
Raises:
An exception on error.
"""
device_name = ctx.device_name
# pylint: disable=protected-access
try:
ctx.ensure_initialized()
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
inputs, attrs, num_outputs)
except core._NotOkStatusException as e:
if name is not None:
e.message += " name: " + name
raise core._status_to_exception(e) from None
except TypeError as e:
keras_symbolic_tensors = [x for x in inputs if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException(
"Inputs to eager execution function cannot be Keras symbolic "
"tensors, but found {}".format(keras_symbolic_tensors))
raise e
# pylint: enable=protected-access
return tensors
def execute_with_cancellation(op_name,
num_outputs,
inputs,
attrs,
ctx,
cancellation_manager,
name=None):
"""Execute a TensorFlow operation.
Args:
op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to
execute.
num_outputs: The number of outputs of the operation to fetch. (Explicitly
provided instead of being inferred for performance reasons).
inputs: A list of inputs to the operation. Each entry should be a Tensor, or
a value which can be passed to the Tensor constructor to create one.
attrs: A tuple with alternating string attr names and attr values for this
operation.
ctx: The value of context.context().
cancellation_manager: a `CancellationManager` object that can be used to
cancel the operation.
name: Customized name for the operation.
Returns:
List of output Tensor objects. The list is empty if there are no outputs
Raises:
An exception on error.
"""
device_name = ctx.device_name
# pylint: disable=protected-access
try:
ctx.ensure_initialized()
tensors = pywrap_tfe.TFE_Py_ExecuteCancelable(ctx._handle, device_name,
op_name, inputs, attrs,
cancellation_manager._impl,
num_outputs)
except core._NotOkStatusException as e:
if name is not None:
e.message += " name: " + name
raise core._status_to_exception(e) from None
except TypeError as e:
keras_symbolic_tensors = [x for x in inputs if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException(
"Inputs to eager execution function cannot be Keras symbolic "
"tensors, but found {}".format(keras_symbolic_tensors))
raise e
# pylint: enable=protected-access
return tensors
def execute_with_callbacks(op_name, num_outputs, inputs, attrs, ctx, name=None):
"""Monkey-patch to execute to enable execution callbacks."""
tensors = quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
for callback in ctx.op_callbacks:
callback(op_name, tuple(inputs), attrs, tensors, name)
return tensors
execute = quick_execute
def must_record_gradient():
"""Import backprop if you want gradients recorded."""
return False
def record_gradient(unused_op_name, unused_inputs, unused_attrs,
unused_outputs):
"""Import backprop if you want gradients recorded."""
pass
def make_float(v, arg_name):
if not isinstance(v, compat.real_types):
raise TypeError("Expected float for argument '%s' not %s." %
(arg_name, repr(v)))
return float(v)
def make_int(v, arg_name):
if isinstance(v, str):
raise TypeError("Expected int for argument '%s' not %s." %
(arg_name, repr(v)))
try:
return int(v)
except (ValueError, TypeError):
raise TypeError("Expected int for argument '%s' not %s." %
(arg_name, repr(v)))
def make_str(v, arg_name):
if not isinstance(v, compat.bytes_or_text_types):
raise TypeError("Expected string for argument '%s' not %s." %
(arg_name, repr(v)))
return compat.as_bytes(v) # Convert unicode strings to bytes.
def make_bool(v, arg_name):
if not isinstance(v, bool):
raise TypeError("Expected bool for argument '%s' not %s." %
(arg_name, repr(v)))
return v
def make_type(v, arg_name):
try:
v = dtypes.as_dtype(v).base_dtype
except TypeError:
raise TypeError("Expected DataType for argument '%s' not %s." %
(arg_name, repr(v)))
i = v.as_datatype_enum
return i
def make_shape(v, arg_name):
"""Convert v into a list."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# None if the rank is unknown, otherwise a list of ints (or Nones in the
# position where the dimension is unknown).
try:
shape = tensor_shape.as_shape(v)
except TypeError as e:
raise TypeError("Error converting %s to a TensorShape: %s." % (arg_name, e))
except ValueError as e:
raise ValueError("Error converting %s to a TensorShape: %s." %
(arg_name, e))
if shape.ndims is None:
return None
else:
return shape.as_list()
def make_tensor(v, arg_name):
"""Ensure v is a TensorProto."""
if isinstance(v, tensor_pb2.TensorProto):
return v
elif isinstance(v, str):
pb = tensor_pb2.TensorProto()
text_format.Merge(v, pb)
return pb
raise TypeError(
"Don't know how to convert %s to a TensorProto for argument '%s'." %
(repr(v), arg_name))
def args_to_matching_eager(l, ctx, allowed_dtypes, default_dtype=None):
"""Convert sequence `l` to eager same-type Tensors."""
del ctx # Unused
if (not l) and (default_dtype is not None):
return default_dtype, [] # List is empty; assume default dtype.
for x in l:
if not isinstance(x, core_types.Value):
break
else: # note: intentional for-else
return l[0]._datatype_enum(), l # pylint: disable=protected-access
# Is some input already a Tensor with a dtype?
dtype = None
for t in l:
if isinstance(t, core_types.Value):
dtype = t.dtype
break
if dtype is None:
# Infer a dtype based on the first value, and use that dtype for the
# remaining values.
ret = []
for t in l:
tensor = None
# First see if we can get a valid dtype with the default conversion
# and see if it matches an allowed dtypes. Some ops like ConcatV2 may
# not list allowed dtypes, in which case we should skip this.
if dtype is None and allowed_dtypes:
tensor = tensor_conversion_registry.convert(t)
# If we did not match an allowed dtype, try again with the default
# dtype. This could be because we have an empty tensor and thus we
# picked the wrong type.
if tensor.dtype not in allowed_dtypes:
tensor = None
if tensor is None:
tensor = tensor_conversion_registry.convert(
t, dtype, preferred_dtype=default_dtype
)
ret.append(tensor)
if dtype is None:
dtype = tensor.dtype
else:
ret = [tensor_conversion_registry.convert(t, dtype) for t in l]
# TODO(slebedev): consider removing this as it leaks a Keras concept.
# pylint: disable=protected-access
keras_symbolic_tensors = [x for x in ret if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException(
"Using symbolic output of a Keras layer during eager execution "
"{}".format(keras_symbolic_tensors))
# pylint: enable=protected-access
return dtype.as_datatype_enum, ret
def convert_to_mixed_eager_tensors(values, ctx):
del ctx # Unused
v = [tensor_conversion_registry.convert(t) for t in values]
types = [t._datatype_enum() for t in v] # pylint: disable=protected-access
return types, v
def args_to_mixed_eager_tensors(lists, ctx):
"""Converts a list of same-length lists of values to eager tensors."""
del ctx # Unused
assert len(lists) > 1
# Generate an error if len(lists[i]) is not the same for all i.
lists_ret = [[]]
for l in lists[1:]:
if len(l) != len(lists[0]):
raise ValueError(
"Expected list arguments to be the same length: %d != %d (%r vs. %r)."
% (len(lists[0]), len(l), lists[0], l))
lists_ret.append([])
# Convert the first element of each list first, then the second element, etc.
types = []
for i in range(len(lists[0])):
dtype = None
# If any list has a Tensor, use that dtype
for l in lists:
if isinstance(l[i], core_types.Value):
dtype = l[i].dtype
break
if dtype is None:
# Convert the first one and use its dtype.
lists_ret[0].append(tensor_conversion_registry.convert(lists[0][i]))
dtype = lists_ret[0][i].dtype
for j in range(1, len(lists)):
lists_ret[j].append(
tensor_conversion_registry.convert(lists[j][i], dtype=dtype)
)
else:
# Convert everything to the found dtype.
for j in range(len(lists)):
lists_ret[j].append(
tensor_conversion_registry.convert(lists[j][i], dtype=dtype)
)
types.append(dtype.as_datatype_enum)
return types, lists_ret
def _is_keras_symbolic_tensor(x):
return hasattr(x, "graph") and getattr(x.graph, "name", None) == "keras_graph"