-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtensor_test.py
651 lines (535 loc) · 23.6 KB
/
tensor_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for TensorFlow "Eager" Mode's Tensor class."""
import copy
import re
import sys
import numpy as np
from tensorflow.python import pywrap_tfe
from tensorflow.python.eager import context
from tensorflow.python.eager import core
from tensorflow.python.eager import test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import io_ops
from tensorflow.python.ops import list_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
def _create_tensor(value, device=None, dtype=None):
context.ensure_initialized()
ctx = context.context()
if device is None:
device = ctx.device_name
if dtype is not None:
dtype = dtype.as_datatype_enum
try:
return ops.EagerTensor(value, device=device, dtype=dtype)
except core._NotOkStatusException as e: # pylint: disable=protected-access
raise core._status_to_exception(e)
class TFETensorTest(test_util.TensorFlowTestCase):
def testScalarTensor(self):
t = _create_tensor(3, dtype=dtypes.int32)
self.assertAllEqual(t, _create_tensor(np.array(3)))
self.assertEqual(dtypes.int32, t.dtype)
self.assertEqual(0, t.shape.ndims)
self.assertAllEqual([], t.shape.as_list())
self.assertIn("tf.Tensor", str(t))
self.assertIn("tf.Tensor", repr(t))
def testBadConstructorArgs(self):
context.ensure_initialized()
ctx = context.context()
device = ctx.device_name
# Missing device.
with self.assertRaisesRegex(TypeError, r".*argument 'device' \(pos 2\).*"):
ops.EagerTensor(1)
# Bad dtype type.
with self.assertRaisesRegex(TypeError,
"Expecting a DataType value for dtype. Got"):
ops.EagerTensor(1, device=device, dtype="1")
# Following errors happen when trying to copy to GPU.
if not test_util.is_gpu_available():
self.skipTest("No GPUs found")
with ops.device("/device:GPU:0"):
# Bad device.
with self.assertRaisesRegex(TypeError, "Error parsing device argument"):
ops.EagerTensor(1.0, device=1)
def testNumpyValue(self):
values = np.array([3.0])
t = _create_tensor(values)
self.assertAllEqual(values, t)
@test_util.assert_no_new_pyobjects_executing_eagerly
def testNumpyDtypeSurvivesThroughTensorConversion(self):
scalar_creators = [np.int32, np.int64, np.float32, np.float64]
conversion_functions = [ops.convert_to_tensor, constant_op.constant]
for scalar_creator in scalar_creators:
for conversion_function in conversion_functions:
np_val = scalar_creator(3)
tensor_val = conversion_function(np_val)
self.assertEqual(tensor_val.numpy().dtype, np_val.dtype)
self.assertEqual(tensor_val.numpy(), np_val)
def testNumpyValueWithCast(self):
values = np.array([3.0], dtype=np.float32)
t = _create_tensor(values, dtype=dtypes.float64)
self.assertAllEqual(values, t)
ctx = context.context()
# Bad dtype value.
with self.assertRaisesRegex(TypeError, "Invalid dtype argument value"):
ops.EagerTensor(values, device=ctx.device_name, dtype=12345)
def testNumpyOrderHandling(self):
n = np.array([[1, 2], [3, 4]], order="F")
t = _create_tensor(n)
self.assertAllEqual([[1, 2], [3, 4]], t)
def testNumpyArrayDtype(self):
tensor = constant_op.constant([1.0, 2.0, 3.0])
numpy_tensor = np.asarray(tensor, dtype=np.int32)
self.assertAllEqual(numpy_tensor, [1, 2, 3])
def testNdimsAgreesWithNumpy(self):
numpy_tensor = np.asarray(1.0)
tensor = constant_op.constant(numpy_tensor)
self.assertAllEqual(numpy_tensor.ndim, tensor.ndim)
numpy_tensor = np.asarray([1.0, 2.0, 3.0])
tensor = constant_op.constant(numpy_tensor)
self.assertAllEqual(numpy_tensor.ndim, tensor.ndim)
numpy_tensor = np.asarray([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]])
tensor = constant_op.constant(numpy_tensor)
self.assertAllEqual(numpy_tensor.ndim, tensor.ndim)
def testLenAgreesWithNumpy(self):
numpy_tensor = np.asarray(1.0)
tensor = constant_op.constant(numpy_tensor)
with self.assertRaises(TypeError):
len(numpy_tensor)
with self.assertRaisesRegex(TypeError, r"Scalar tensor has no `len[(][)]`"):
len(tensor)
numpy_tensor = np.asarray([1.0, 2.0, 3.0])
tensor = constant_op.constant(numpy_tensor)
self.assertAllEqual(len(numpy_tensor), len(tensor))
numpy_tensor = np.asarray([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]])
tensor = constant_op.constant(numpy_tensor)
self.assertAllEqual(len(numpy_tensor), len(tensor))
def testCopy(self):
t = constant_op.constant(1.0)
tt = copy.copy(t)
self.assertAllEqual(tt, 1.0)
del tt
tt = copy.deepcopy(t)
self.assertAllEqual(tt, 1.0)
del tt
self.assertAllEqual(t, 1.0)
def testConstantDtype(self):
self.assertEqual(
constant_op.constant(1, dtype=np.int64).dtype, dtypes.int64)
def testTensorAndNumpyMatrix(self):
expected = np.array([[1.0, 2.0], [3.0, 4.0]], np.float32)
actual = _create_tensor([[1.0, 2.0], [3.0, 4.0]])
self.assertAllEqual(expected, actual)
self.assertEqual(np.float32, actual.dtype)
self.assertEqual(dtypes.float32, actual.dtype)
self.assertAllEqual([2, 2], actual.shape.as_list())
def testNumpyArrayInterface(self):
class ArrayAsArrayInterface:
"""Simple class that wraps an np.array as an __array_interface__."""
def __init__(self, array):
self.array = array
@property
def __array_interface__(self):
return self.array.__array_interface__
expected = np.array([[1.0, 2.0], [3.0, 4.0]], np.float32)
array_interface = ArrayAsArrayInterface(expected)
actual = _create_tensor(array_interface)
self.assertAllEqual(expected, actual)
def testFloatDowncast(self):
# Unless explicitly specified, float64->float32
t = _create_tensor(3.0)
self.assertEqual(dtypes.float32, t.dtype)
t = _create_tensor(3.0, dtype=dtypes.float64)
self.assertEqual(dtypes.float64, t.dtype)
def testBool(self):
self.assertFalse(bool(_create_tensor(False)))
self.assertFalse(bool(_create_tensor([False])))
self.assertFalse(bool(_create_tensor([[False]])))
self.assertFalse(bool(_create_tensor([0])))
self.assertFalse(bool(_create_tensor([0.])))
self.assertTrue(bool(_create_tensor([1])))
self.assertTrue(bool(_create_tensor([1.])))
def testIndex(self):
self.assertEqual([42][_create_tensor(0)], 42)
with self.assertRaises(TypeError):
_ = [42][_create_tensor([0])]
def testIntDowncast(self):
t = _create_tensor(3)
self.assertEqual(dtypes.int32, t.dtype)
t = _create_tensor(3, dtype=dtypes.int64)
self.assertEqual(dtypes.int64, t.dtype)
t = _create_tensor(2**33)
self.assertEqual(dtypes.int64, t.dtype)
def testTensorCreationFailure(self):
with self.assertRaises(ValueError):
# Should fail because the each row of the Python object has a different
# number of columns.
self.assertEqual(None, _create_tensor([[1], [1, 2]]))
def testMultiLineTensorStr(self):
t = _create_tensor(np.eye(3))
tensor_str = str(t)
self.assertIn("shape=%s, dtype=%s" % (t.shape, t.dtype.name), tensor_str)
self.assertIn(str(t), tensor_str)
def testMultiLineTensorRepr(self):
t = _create_tensor(np.eye(3))
tensor_repr = repr(t)
self.assertTrue(tensor_repr.startswith("<"))
self.assertTrue(tensor_repr.endswith(">"))
self.assertIn(
"shape=%s, dtype=%s, numpy=\n%r" % (t.shape, t.dtype.name, t.numpy()),
tensor_repr)
def testTensorStrReprObeyNumpyPrintOptions(self):
orig_threshold = np.get_printoptions()["threshold"]
orig_edgeitems = np.get_printoptions()["edgeitems"]
np.set_printoptions(threshold=2, edgeitems=1)
t = _create_tensor(np.arange(10, dtype=np.int32))
self.assertTrue(re.match(r".*\[.*0.*\.\.\..*9.*\]", str(t)))
self.assertTrue(re.match(r".*\[.*0.*\.\.\..*9.*\]", repr(t)))
# Clean up: reset to previous printoptions.
np.set_printoptions(threshold=orig_threshold, edgeitems=orig_edgeitems)
def testZeroDimTensorStr(self):
t = _create_tensor(42)
self.assertIn("42, shape=(), dtype=int32", str(t))
def testZeroDimTensorRepr(self):
t = _create_tensor(42)
self.assertTrue(repr(t).startswith("<"))
self.assertTrue(repr(t).endswith(">"))
self.assertIn("shape=(), dtype=int32, numpy=42", repr(t))
def testZeroSizeTensorStr(self):
t = _create_tensor(np.zeros(0, dtype=np.float32))
self.assertIn("[], shape=(0,), dtype=float32", str(t))
def testZeroSizeTensorRepr(self):
t = _create_tensor(np.zeros(0, dtype=np.float32))
self.assertTrue(repr(t).startswith("<"))
self.assertTrue(repr(t).endswith(">"))
self.assertIn("shape=(0,), dtype=float32, numpy=%r" % t.numpy(), repr(t))
def testStringTensor(self):
t_np_orig = np.array([[b"a", b"ab"], [b"abc", b"abcd"]])
t = _create_tensor(t_np_orig)
t_np = t.numpy()
self.assertTrue(np.all(t_np == t_np_orig), "%s vs %s" % (t_np, t_np_orig))
def testIterateOverTensor(self):
l = [[1, 2], [3, 4]]
t = _create_tensor(l)
for list_element, tensor_element in zip(l, t):
self.assertAllEqual(list_element, tensor_element.numpy())
def testIterateOverScalarTensorRaises(self):
t = _create_tensor(1)
with self.assertRaisesRegex(TypeError,
"Cannot iterate over a scalar tensor"):
iter(t)
@test_util.run_gpu_only
def testStringTensorOnGPU(self):
with ops.device("/device:GPU:0"):
t = _create_tensor("test string")
self.assertIn("GPU", t.device)
def testInvalidUTF8ProducesReasonableError(self):
if sys.version_info[0] < 3:
self.skipTest("Test is only valid in python3.")
with self.assertRaises(UnicodeDecodeError):
io_ops.read_file(b"\xff")
@test_util.run_in_graph_and_eager_modes
def testConvertToTensorPreferredDtypeIsRespected(self):
self.assertEqual(
ops.convert_to_tensor(0.5, preferred_dtype=dtypes.int32).dtype,
dtypes.float32)
self.assertEqual(
ops.convert_to_tensor(0.5, preferred_dtype=dtypes.float64).dtype,
dtypes.float64)
@test_util.run_in_graph_and_eager_modes
def testCompatibility(self):
integer_types = [
dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64, dtypes.uint8,
dtypes.uint16, dtypes.uint32, dtypes.uint64
]
# Floats are not compatible with ints
for t in integer_types:
with self.assertRaises(TypeError):
constant_op.constant(0.5, dtype=t)
# Ints compatible with floats
self.assertEqual(
self.evaluate(constant_op.constant(5, dtype=dtypes.float16)), 5.0)
self.assertEqual(
self.evaluate(constant_op.constant(5, dtype=dtypes.float32)), 5.0)
self.assertEqual(
self.evaluate(constant_op.constant(5, dtype=dtypes.float64)), 5.0)
self.assertEqual(
self.evaluate(constant_op.constant(5, dtype=dtypes.bfloat16)), 5.0)
# Ints and floats are compatible with complex types
self.assertEqual(
constant_op.constant([[1.0]], dtype=dtypes.complex128).dtype,
dtypes.complex128)
self.assertEqual(
constant_op.constant([[1]], dtype=dtypes.complex128).dtype,
dtypes.complex128)
# Quantized types are not compatible with floats
quantized_types = [
dtypes.qint16, dtypes.qint32, dtypes.qint8, dtypes.quint16,
dtypes.quint8
]
for t in quantized_types:
with self.assertRaises(TypeError):
constant_op.constant(0.5, dtype=t)
# TODO(b/118402529): quantized types are broken in eager.
@test_util.run_in_graph_and_eager_modes
def testCConvertToTensor(self):
with self.assertRaises(TypeError):
_ = constant_op.constant(0) < 0.5
@test_util.run_in_graph_and_eager_modes
def testConvertToTensorAllowsOverflow(self):
_ = ops.convert_to_tensor(123456789, dtype=dtypes.uint8)
@test_util.assert_no_new_pyobjects_executing_eagerly
@test_util.run_in_graph_and_eager_modes
def testConvertToTensorNumpyZeroDim(self):
for np_type, dtype in [(np.int32, dtypes.int32), (np.half, dtypes.half),
(np.float32, dtypes.float32)]:
x = ops.convert_to_tensor(
[np.array(65, dtype=np_type),
np.array(16, dtype=np_type)])
self.assertEqual(x.dtype, dtype)
self.assertAllEqual(x, [65, 16])
@test_util.assert_no_new_pyobjects_executing_eagerly
@test_util.run_in_graph_and_eager_modes
def testConvertToTensorNumpyScalar(self):
x = ops.convert_to_tensor([
np.array(321, dtype=np.int64).item(),
np.array(16, dtype=np.int64).item()
])
self.assertAllEqual(x, [321, 16])
def testEagerTensorError(self):
with self.assertRaisesRegex(TypeError,
"Cannot convert .* to EagerTensor of dtype .*"):
_ = ops.convert_to_tensor(1., dtype=dtypes.int32)
def testEagerLargeConstant(self):
for t in [dtypes.uint64, dtypes.uint32, dtypes.int32, dtypes.int64]:
self.assertEqual(constant_op.constant(t.max, dtype=t).numpy(), t.max)
self.assertEqual(constant_op.constant(t.min, dtype=t).numpy(), t.min)
def test_numpyIsView(self):
with ops.device("CPU"):
t = constant_op.constant([0.0])
t._numpy()[0] = 42.0
self.assertAllClose(t, constant_op.constant([42.0]))
def test_numpyFailsForResource(self):
v = variables.Variable(42)
with self.assertRaisesRegex(errors.InvalidArgumentError,
"Cannot convert .+ resource"):
v._handle._numpy()
def test_numpyFailsForVariant(self):
variant_t = list_ops.tensor_list_reserve(
element_shape=[], num_elements=1, element_dtype=dtypes.float32)
with self.assertRaisesRegex(errors.InvalidArgumentError,
"Cannot convert .+ variant"):
variant_t._numpy()
def testMemoryviewFailsForResource(self):
v = variables.Variable(42)
with self.assertRaisesRegex(BufferError, "Cannot convert .+ resource"):
np.asarray(memoryview(v._handle))
def testMemoryviewFailsForVariant(self):
variant_t = list_ops.tensor_list_reserve(
element_shape=[], num_elements=1, element_dtype=dtypes.float32)
with self.assertRaisesRegex(BufferError, "Cannot convert .+ variant"):
np.asarray(memoryview(variant_t))
def testMemoryviewIsReadonly(self):
t = constant_op.constant([0.0])
self.assertTrue(memoryview(t).readonly)
@test_util.assert_no_new_pyobjects_executing_eagerly
def testMemoryviewScalar(self):
t = constant_op.constant(42.0)
self.assertAllEqual(
np.array(memoryview(t)), np.array(42.0, dtype=np.float32))
@test_util.assert_no_new_pyobjects_executing_eagerly
def testMemoryviewEmpty(self):
t = constant_op.constant([], dtype=np.float32)
self.assertAllEqual(np.array(memoryview(t)), np.array([]))
@test_util.run_gpu_only
@test_util.assert_no_new_pyobjects_executing_eagerly
def testMemoryviewCopyToCPU(self):
with ops.device("/device:GPU:0"):
t = constant_op.constant([0.0])
self.assertAllEqual(
np.array(memoryview(t)), np.array([0.0], dtype=np.float32))
@test_util.disable_tfrt("b/169877776: ResourceVariable is not initialized "
"properly in TFRT")
def testResourceTensorCopy(self):
if not test_util.is_gpu_available():
self.skipTest("GPU only")
with ops.device("GPU:0"):
v = resource_variable_ops.ResourceVariable(1.)
read_handle_on_gpu = resource_variable_ops.read_variable_op(
v.handle, dtypes.float32)
handle_on_cpu = v.handle.cpu()
read_handle_on_cpu = resource_variable_ops.read_variable_op(
handle_on_cpu, dtypes.float32)
self.assertAllEqual(read_handle_on_cpu, read_handle_on_gpu)
def testEagerTensorFormat(self):
t = array_ops.constant(1)
self.assertEqual(f"{t}", "1")
self.assertEqual(str(t), "tf.Tensor(1, shape=(), dtype=int32)")
self.assertEqual(f"{t!s}", "tf.Tensor(1, shape=(), dtype=int32)")
self.assertEqual(repr(t), "<tf.Tensor: shape=(), dtype=int32, numpy=1>")
self.assertEqual(f"{t!r}", "<tf.Tensor: shape=(), dtype=int32, numpy=1>")
def testEagerTensorFormatForResource(self):
t = resource_variable_ops.VarHandleOp(shape=[], dtype=dtypes.float32)
# type is compiler-depdendent, as it comes from demangling.
handle_str = (f"<ResourceHandle("
f"name=\"\", "
f"device=\"{t.device}\", "
f"container=\"localhost\", "
f"type=\"@@tensorflow@@Var@@\")>")
def make_regex(s):
return re.escape(s).replace("@@", ".*")
self.assertRegex(f"{t}", make_regex(handle_str))
self.assertRegex(
str(t),
make_regex(f"tf.Tensor({handle_str}, shape=(), dtype=resource)"))
self.assertRegex(
f"{t!s}",
make_regex(f"tf.Tensor({handle_str}, shape=(), dtype=resource)"))
self.assertRegex(
repr(t),
make_regex(
f"<tf.Tensor: shape=(), dtype=resource, value={handle_str}>"))
self.assertRegex(
f"{t!r}",
make_regex(
f"<tf.Tensor: shape=(), dtype=resource, value={handle_str}>"))
def testEagerTensorFormatForVariant(self):
t = list_ops.tensor_list_reserve(
element_shape=[1], num_elements=1, element_dtype=dtypes.float32)
self.assertEqual(f"{t}", "<TensorList>")
self.assertEqual(str(t), "tf.Tensor(<TensorList>, shape=(), dtype=variant)")
self.assertEqual(f"{t!s}",
"tf.Tensor(<TensorList>, shape=(), dtype=variant)")
self.assertEqual(
repr(t), "<tf.Tensor: shape=(), dtype=variant, value=<TensorList>>")
self.assertEqual(
f"{t!r}", "<tf.Tensor: shape=(), dtype=variant, value=<TensorList>>")
def testNumpyTooManyDimensions(self):
t = constant_op.constant(1., shape=[1] * 33)
with self.assertRaisesRegex(
errors.InvalidArgumentError,
"Cannot convert tensor with 33 dimensions to NumPy array. NumPy arrays "
"can have at most 32 dimensions"):
t.numpy()
def testNumpyDimsTooBig(self):
# Creating a Numpy array fails in some cases if the product of non-zero
# dimensions is very big, even if the shape also has a zero in it.
t = array_ops.ones((0, 2**31, 2**31))
with self.assertRaisesRegex(
errors.InvalidArgumentError,
r"Failed to create numpy array from tensor of shape "
r"\[0, 2147483648, 2147483648\]. Numpy error.*array is too big"):
t.numpy()
class TFETensorUtilTest(test_util.TensorFlowTestCase):
def setUp(self):
super(TFETensorUtilTest, self).setUp()
context.ensure_initialized()
def testListOfThree(self):
t1 = _create_tensor([[1, 2], [3, 4], [5, 6]], dtype=dtypes.int32)
t2 = _create_tensor([[1, 2, 5], [3, 4, 5]], dtype=dtypes.int32)
t3 = _create_tensor([[1], [3], [5], [6]], dtype=dtypes.int32)
r = pywrap_tfe.TFE_Py_TensorShapeSlice([t1, t2, t3], 0)
self.assertAllEqual(np.array([3, 2, 4]), r.numpy())
r = pywrap_tfe.TFE_Py_TensorShapeSlice([t1, t2, t3], 1)
self.assertAllEqual(np.array([2, 3, 1]), r.numpy())
def testEmptyTensorList(self):
a = pywrap_tfe.TFE_Py_TensorShapeSlice([], 0)
self.assertTrue(isinstance(a, ops.EagerTensor))
self.assertEqual(0, a.numpy().size)
def testTensorListContainsNonTensors(self):
t1 = _create_tensor([1, 2], dtype=dtypes.int32)
with self.assertRaisesRegex(
TypeError,
r"Expected a list of EagerTensors but element 1 has type \"str\""):
pywrap_tfe.TFE_Py_TensorShapeSlice([t1, "abc"], 0)
with self.assertRaisesRegex(
TypeError,
r"Expected a list of EagerTensors but element 0 has type \"int\""):
pywrap_tfe.TFE_Py_TensorShapeSlice([2, t1], 0)
def testTensorListNotList(self):
t1 = _create_tensor([1, 2], dtype=dtypes.int32)
with self.assertRaisesRegex(
TypeError,
r"tensors argument must be a list or a tuple. Got.*EagerTensor"):
pywrap_tfe.TFE_Py_TensorShapeSlice(t1, -2)
def testNegativeSliceDim(self):
t1 = _create_tensor([1, 2], dtype=dtypes.int32)
with self.assertRaisesRegex(
ValueError, r"Slice dimension must be non-negative. Got -2"):
pywrap_tfe.TFE_Py_TensorShapeSlice([t1], -2)
def testUnicode(self):
self.assertEqual(constant_op.constant(u"asdf").numpy(), b"asdf")
def testFloatTensor(self):
self.assertEqual(dtypes.float64, _create_tensor(np.float64()).dtype) # pylint: disable=no-value-for-parameter
self.assertEqual(dtypes.float32, _create_tensor(np.float32()).dtype) # pylint: disable=no-value-for-parameter
self.assertEqual(dtypes.float16, _create_tensor(np.float16()).dtype) # pylint: disable=no-value-for-parameter
self.assertEqual(dtypes.float32, _create_tensor(0.0).dtype)
def testSliceDimOutOfRange(self):
t1 = _create_tensor([[1, 2], [3, 4], [5, 6]], dtype=dtypes.int32)
t2 = _create_tensor([1, 2], dtype=dtypes.int32)
t3 = _create_tensor(2, dtype=dtypes.int32)
with self.assertRaisesRegex(
IndexError,
r"Slice dimension \(2\) must be smaller than rank of all tensors, "
"but tensor at index 0 has rank 2"):
pywrap_tfe.TFE_Py_TensorShapeSlice([t1], 2)
with self.assertRaisesRegex(
IndexError,
r"Slice dimension \(1\) must be smaller than rank of all tensors, "
"but tensor at index 0 has rank 1"):
pywrap_tfe.TFE_Py_TensorShapeSlice([t2], 1)
with self.assertRaisesRegex(
IndexError,
r"Slice dimension \(1\) must be smaller than rank of all tensors, "
"but tensor at index 1 has rank 1"):
pywrap_tfe.TFE_Py_TensorShapeSlice([t1, t2], 1)
with self.assertRaisesRegex(
IndexError,
r"Slice dimension \(0\) must be smaller than rank of all tensors, "
"but tensor at index 0 has rank 0"):
pywrap_tfe.TFE_Py_TensorShapeSlice([t3], 0)
with self.assertRaisesRegex(
IndexError,
r"Slice dimension \(0\) must be smaller than rank of all tensors, "
"but tensor at index 2 has rank 0"):
pywrap_tfe.TFE_Py_TensorShapeSlice([t2, t1, t3], 0)
@test_util.assert_no_new_pyobjects_executing_eagerly
def testTensorDir(self):
t = array_ops.ones(1)
t.test_attr = "Test"
instance_dir = dir(t)
type_dir = dir(ops.EagerTensor)
# Monkey patched attributes should show up in dir(t)
self.assertIn("test_attr", instance_dir)
instance_dir.remove("test_attr")
self.assertEqual(instance_dir, type_dir)
def testNonRectangularPackAsConstant(self):
l = [array_ops.zeros((10, 1)).numpy(), array_ops.zeros(1).numpy()]
with self.assertRaisesRegex(ValueError, "non-rectangular Python sequence"):
constant_op.constant(l)
@test_util.assert_no_new_pyobjects_executing_eagerly
def testFloatAndIntAreConvertibleToComplex(self):
a = [[1., 1], [1j, 2j]]
np_value = np.array(a, dtype=np.complex128)
tf_value = ops.convert_to_tensor(a, dtype=dtypes.complex128)
self.assertAllEqual(tf_value.numpy(), np_value)
if __name__ == "__main__":
test.main()