-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimporter.py
551 lines (478 loc) · 22.5 KB
/
importer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A utility function for importing TensorFlow graphs."""
import contextlib
from tensorflow.core.framework import graph_pb2
from tensorflow.python import tf2
from tensorflow.python.client import pywrap_tf_session as c_api
from tensorflow.python.framework import c_api_util
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import errors
from tensorflow.python.framework import function
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_util
from tensorflow.python.util import compat
from tensorflow.python.util.deprecation import deprecated_args
from tensorflow.python.util.tf_export import tf_export
def _IsControlInput(input_name):
# Expected format: '^operation_name' (control input).
return input_name.startswith('^')
def _ParseTensorName(tensor_name):
"""Parses a tensor name into an operation name and output index.
This function will canonicalize tensor names as follows:
* "foo:0" -> ("foo", 0)
* "foo:7" -> ("foo", 7)
* "foo" -> ("foo", 0)
* "foo:bar:baz" -> ValueError
Args:
tensor_name: The name of a tensor.
Returns:
A tuple containing the operation name, and the output index.
Raises:
ValueError: If `tensor_name' cannot be interpreted as the name of a tensor.
"""
components = tensor_name.split(':')
if len(components) == 2:
# Expected format: 'operation_name:output_index'.
try:
output_index = int(components[1])
except ValueError:
raise ValueError(f'Cannot convert {tensor_name!r} to a tensor name. '
'Second component of the name following the `:` should '
f'be an int. Got {components[1]}.')
return components[0], output_index
elif len(components) == 1:
# Expected format: 'operation_name' (implicit 0th output).
return components[0], 0
else:
raise ValueError(f"Cannot convert '{tensor_name}' to a tensor name. Tensor "
'names should not contain more than 1 `:`. Obtained '
f'{len(components) - 1}')
@contextlib.contextmanager
def _MaybeDevice(device):
"""Applies the given device only if device is not None or empty."""
if device:
with ops.device(device):
yield
else:
yield
def _ProcessGraphDefParam(graph_def):
"""Type-checks and possibly canonicalizes `graph_def`."""
if not isinstance(graph_def, graph_pb2.GraphDef):
# `graph_def` could be a dynamically-created message, so try a duck-typed
# approach
try:
old_graph_def = graph_def
graph_def = graph_pb2.GraphDef()
graph_def.MergeFrom(old_graph_def)
except TypeError:
raise TypeError('Argument `graph_def` must be a GraphDef proto.')
else:
# If we're using the graph_def provided by the caller, modify graph_def
# in-place to add attr defaults to the NodeDefs (this is visible to the
# caller).
# NOTE(skyewm): this is undocumented behavior that at least meta_graph.py
# depends on. It might make sense to move this to meta_graph.py and have
# import_graph_def not modify the graph_def argument (we'd have to make sure
# this doesn't break anything else.)
for node in graph_def.node:
op_def = op_def_registry.get(node.op)
if op_def is None:
# Assume unrecognized ops are functions for now. TF_ImportGraphDef will
# report an error if the op is actually missing.
continue
_SetDefaultAttrValues(node, op_def)
return graph_def
def _ProcessInputMapParam(input_map):
"""Type-checks and possibly canonicalizes `input_map`."""
if input_map is None:
input_map = {}
else:
if not isinstance(input_map, dict):
raise TypeError('Argument `input_map` must be a dictionary. Obtained '
f'{type(input_map).__name__}')
if not all(
isinstance(k, compat.bytes_or_text_types) for k in input_map.keys()):
raise TypeError('All keys for argument `input_map` must be strings. '
f'Obtained keys: {list(input_map.keys())}')
return input_map
def _ProcessReturnElementsParam(return_elements):
"""Type-checks and possibly canonicalizes `return_elements`."""
if return_elements is None:
return None
if not all(
isinstance(x, compat.bytes_or_text_types) for x in return_elements):
raise TypeError('Argument `return_elements` must be a list of strings. '
f'Obtained {return_elements}.')
return tuple(compat.as_str(x) for x in return_elements)
def _FindAttrInOpDef(attr_name, op_def):
for attr_def in op_def.attr:
if attr_name == attr_def.name:
return attr_def
return None
def _RemoveDefaultAttrs(producer_op_list, graph_def):
"""Removes unknown default attrs according to `producer_op_list`.
Removes any unknown attrs in `graph_def` (i.e. attrs that do not appear in
registered OpDefs) that have a default value in `producer_op_list`.
Args:
producer_op_list: OpList proto.
graph_def: GraphDef proto
"""
producer_op_dict = {op.name: op for op in producer_op_list.op}
for node in graph_def.node:
# Remove any default attr values that aren't in op_def.
if node.op in producer_op_dict:
op_def = op_def_registry.get(node.op)
if op_def is None:
# Some custom op registrations won't show up here. That's OK, attribute
# stripping just won't be available.
continue
producer_op_def = producer_op_dict[node.op]
# We make a copy of node.attr to iterate through since we may modify
# node.attr inside the loop.
for key in list(node.attr):
if _FindAttrInOpDef(key, op_def) is None:
# No attr_def in consumer, look in producer.
attr_def = _FindAttrInOpDef(key, producer_op_def)
if (attr_def and attr_def.HasField('default_value') and
node.attr[key] == attr_def.default_value):
# Unknown attr had default value in producer, delete it so it can be
# understood by consumer.
del node.attr[key]
def _ConvertInputMapValues(name, input_map):
"""Ensures all input map values are tensors.
This should be called from inside the import name scope.
Args:
name: the `name` argument passed to import_graph_def
input_map: the `input_map` argument passed to import_graph_def.
Returns:
An possibly-updated version of `input_map`.
Raises:
ValueError: if input map values cannot be converted due to empty name scope.
"""
if not all(isinstance(v, ops.Tensor) for v in input_map.values()):
if name == '': # pylint: disable=g-explicit-bool-comparison
raise ValueError(
'tf.import_graph_def() requires a non-empty `name` if `input_map` '
'contains non-Tensor values. Try calling tf.convert_to_tensor() on '
'`input_map` values before calling tf.import_graph_def().')
with ops.name_scope('_inputs'):
input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()}
return input_map
def _PopulateTFImportGraphDefOptions(options, prefix, input_map,
return_elements,
validate_colocation_constraints,
propagate_device_spec=False):
"""Populates the TF_ImportGraphDefOptions `options`."""
c_api.TF_ImportGraphDefOptionsSetPrefix(options, prefix)
c_api.TF_ImportGraphDefOptionsSetUniquifyNames(options, True)
c_api.TF_ImportGraphDefOptionsSetPropagateDeviceSpec(options,
propagate_device_spec)
for input_src, input_dst in input_map.items():
input_src = compat.as_str(input_src)
if input_src.startswith('^'):
src_name = compat.as_str(input_src[1:])
dst_op = input_dst._as_tf_output().oper # pylint: disable=protected-access
c_api.TF_ImportGraphDefOptionsRemapControlDependency(
options, src_name, dst_op)
else:
src_name, src_idx = _ParseTensorName(input_src)
src_name = compat.as_str(src_name)
dst_output = input_dst._as_tf_output() # pylint: disable=protected-access
c_api.TF_ImportGraphDefOptionsAddInputMapping(options, src_name, src_idx,
dst_output)
for name in return_elements or []:
if ':' in name:
op_name, index = _ParseTensorName(name)
op_name = compat.as_str(op_name)
c_api.TF_ImportGraphDefOptionsAddReturnOutput(options, op_name, index)
else:
c_api.TF_ImportGraphDefOptionsAddReturnOperation(options,
compat.as_str(name))
c_api.TF_ImportGraphDefOptionsSetValidateColocationConstraints(
options, validate_colocation_constraints)
def _ProcessNewOps(graph):
"""Processes the newly-added TF_Operations in `graph`."""
# Maps from a node to the names of the ops it's colocated with, if colocation
# is specified in the attributes.
colocation_pairs = {}
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
original_device = new_op.device
new_op._set_device('') # pylint: disable=protected-access
colocation_names = _GetColocationNames(new_op)
if colocation_names:
colocation_pairs[new_op] = colocation_names
# Don't set a device for this op, since colocation constraints override
# device functions and the original device. Note that this op's device may
# still be set by the loop below.
# TODO(skyewm): why does it override the original device?
else:
with _MaybeDevice(original_device):
graph._apply_device_functions(new_op) # pylint: disable=protected-access
# The following loop populates the device field of ops that are colocated
# with another op. This is implied by the colocation attribute, but we
# propagate the device field for completeness.
for op, coloc_op_list in colocation_pairs.items():
coloc_device = None
# Find any device in the list of colocated ops that have a device, if it
# exists. We assume that if multiple ops have devices, they refer to the
# same device. Otherwise, a runtime error will occur since the colocation
# property cannot be guaranteed. Note in TF2 colocations have been removed
# from the public API and will be considered a hint, so there is no runtime
# error.
#
# One possible improvement is to try to check for compatibility of all
# devices in this list at import time here, which would require
# implementing a compatibility function for device specs in python.
for coloc_op_name in coloc_op_list:
try:
coloc_op = graph._get_operation_by_name(coloc_op_name) # pylint: disable=protected-access
except KeyError:
# Do not error in TF2 if the colocation cannot be guaranteed
if tf2.enabled() or control_flow_util.EnableControlFlowV2(graph):
continue
raise ValueError(f'Specified colocation to an op: {coloc_op_name} that '
f'does not exist during import for op: {op.name}')
if coloc_op.device:
coloc_device = pydev.DeviceSpec.from_string(coloc_op.device)
break
if coloc_device:
op._set_device(coloc_device) # pylint: disable=protected-access
def _GetColocationNames(op):
"""Returns names of the ops that `op` should be colocated with."""
colocation_names = []
try:
class_values = op.get_attr('_class')
except ValueError:
# No _class attr
return
for val in class_values:
val = compat.as_str(val)
if val.startswith('loc:@'):
colocation_node_name = val[len('loc:@'):]
if colocation_node_name != op.name:
colocation_names.append(colocation_node_name)
return colocation_names
def _GatherReturnElements(requested_return_elements, graph, results):
"""Returns the requested return elements from results.
Args:
requested_return_elements: list of strings of operation and tensor names
graph: Graph
results: wrapped TF_ImportGraphDefResults
Returns:
list of `Operation` and/or `Tensor` objects
"""
return_outputs = c_api.TF_ImportGraphDefResultsReturnOutputs(results)
return_opers = c_api.TF_ImportGraphDefResultsReturnOperations(results)
combined_return_elements = []
outputs_idx = 0
opers_idx = 0
for name in requested_return_elements:
if ':' in name:
combined_return_elements.append(
graph._get_tensor_by_tf_output(return_outputs[outputs_idx])) # pylint: disable=protected-access
outputs_idx += 1
else:
combined_return_elements.append(
graph._get_operation_by_tf_operation(return_opers[opers_idx])) # pylint: disable=protected-access
opers_idx += 1
return combined_return_elements
def _SetDefaultAttrValues(node_def, op_def):
"""Set any default attr values in `node_def` that aren't present."""
assert node_def.op == op_def.name
for attr_def in op_def.attr:
key = attr_def.name
if attr_def.HasField('default_value'):
value = node_def.attr[key]
if value is None or value.WhichOneof('value') is None:
node_def.attr[key].CopyFrom(attr_def.default_value)
@tf_export('graph_util.import_graph_def', 'import_graph_def')
@deprecated_args(None, 'Please file an issue at '
'https://github.com/tensorflow/tensorflow/issues if you depend'
' on this feature.', 'op_dict')
def import_graph_def(graph_def,
input_map=None,
return_elements=None,
name=None,
op_dict=None,
producer_op_list=None):
"""Imports the graph from `graph_def` into the current default `Graph`.
This function provides a way to import a serialized TensorFlow
[`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the `GraphDef` as
`tf.Tensor` and `tf.Operation` objects. Once extracted,
these objects are placed into the current default `Graph`. See
`tf.Graph.as_graph_def` for a way to create a `GraphDef`
proto.
Args:
graph_def: A `GraphDef` proto containing operations to be imported into
the default graph.
input_map: A dictionary mapping input names (as strings) in `graph_def`
to `Tensor` objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective `Tensor` values.
return_elements: A list of strings containing operation names in
`graph_def` that will be returned as `Operation` objects; and/or
tensor names in `graph_def` that will be returned as `Tensor` objects.
name: (Optional.) A prefix that will be prepended to the names in
`graph_def`. Note that this does not apply to imported function names.
Defaults to `"import"`.
op_dict: (Optional.) Deprecated, do not use.
producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
list of `OpDef`s used by the producer of the graph. If provided,
unrecognized attrs for ops in `graph_def` that have their default value
according to `producer_op_list` will be removed. This will allow some more
`GraphDef`s produced by later binaries to be accepted by earlier binaries.
Returns:
A list of `Operation` and/or `Tensor` objects from the imported graph,
corresponding to the names in `return_elements`,
and None if `returns_elements` is None.
Raises:
TypeError: If `graph_def` is not a `GraphDef` proto,
`input_map` is not a dictionary mapping strings to `Tensor` objects,
or `return_elements` is not a list of strings.
ValueError: If `input_map`, or `return_elements` contains names that
do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
it refers to an unknown tensor).
"""
del op_dict
return _import_graph_def_internal(
graph_def,
input_map=input_map,
return_elements=return_elements,
name=name,
producer_op_list=producer_op_list)
def import_graph_def_for_function( # pylint: disable=invalid-name
graph_def, name=None, propagate_device_spec=False):
"""Like import_graph_def but does not validate colocation constraints."""
return _import_graph_def_internal(
graph_def,
validate_colocation_constraints=False,
name=name,
propagate_device_spec=propagate_device_spec)
def _import_graph_def_internal( # pylint: disable=invalid-name
graph_def,
input_map=None,
return_elements=None,
validate_colocation_constraints=True,
name=None,
producer_op_list=None,
propagate_device_spec=False):
"""Imports the graph from `graph_def` into the current default `Graph`.
This function provides a way to import a serialized TensorFlow
[`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
protocol buffer, and extract individual objects in the `GraphDef` as
`tf.Tensor` and `tf.Operation` objects. Once extracted,
these objects are placed into the current default `Graph`. See
`tf.Graph.as_graph_def` for a way to create a `GraphDef`
proto.
Args:
graph_def: A `GraphDef` proto containing operations to be imported into the
default graph.
input_map: A dictionary mapping input names (as strings) in `graph_def` to
`Tensor` objects. The values of the named input tensors in the imported
graph will be re-mapped to the respective `Tensor` values.
return_elements: A list of strings containing operation names in `graph_def`
that will be returned as `Operation` objects; and/or tensor names in
`graph_def` that will be returned as `Tensor` objects.
validate_colocation_constraints: Whether to validate colocation constraints.
name: (Optional.) A prefix that will be prepended to the names in
`graph_def`. Note that this does not apply to imported function names.
Defaults to `"import"`.
producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
list of `OpDef`s used by the producer of the graph. If provided,
unrecognized attrs for ops in `graph_def` that have their default value
according to `producer_op_list` will be removed. This will allow some more
`GraphDef`s produced by later binaries to be accepted by earlier binaries.
propagate_device_spec: Whether to propagate assigned device information
when importing a graph from a GraphDef into the current default `Graph`.
Returns:
A list of `Operation` and/or `Tensor` objects from the imported graph,
corresponding to the names in `return_elements`,
and None if `returns_elements` is None.
Raises:
TypeError: If `graph_def` is not a `GraphDef` proto,
`input_map` is not a dictionary mapping strings to `Tensor` objects,
or `return_elements` is not a list of strings.
ValueError: If `input_map`, or `return_elements` contains names that
do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
it refers to an unknown tensor).
"""
graph_def = _ProcessGraphDefParam(graph_def)
input_map = _ProcessInputMapParam(input_map)
return_elements = _ProcessReturnElementsParam(return_elements)
if producer_op_list is not None:
# TODO(skyewm): make a copy of graph_def so we're not mutating the argument?
_RemoveDefaultAttrs(producer_op_list, graph_def)
graph = ops.get_default_graph()
with ops.name_scope(name, 'import', input_map.values()) as scope:
# Save unique prefix generated by name_scope
if scope:
assert scope.endswith('/')
prefix = scope[:-1]
else:
prefix = ''
# Generate any input map tensors inside name scope
input_map = _ConvertInputMapValues(name, input_map)
scoped_options = c_api_util.ScopedTFImportGraphDefOptions()
options = scoped_options.options
_PopulateTFImportGraphDefOptions(options, prefix, input_map, return_elements,
validate_colocation_constraints,
propagate_device_spec)
# _ProcessNewOps mutates the new operations. _mutation_lock ensures a
# Session.run call cannot occur between creating the TF_Operations in the
# TF_GraphImportGraphDefWithResults call and mutating the them in
# _ProcessNewOps.
with graph._mutation_lock(): # pylint: disable=protected-access
with c_api_util.tf_buffer(graph_def.SerializeToString()) as serialized:
try:
with graph._c_graph.get() as c_graph: # pylint: disable=protected-access
results = c_api.TF_GraphImportGraphDefWithResults(
c_graph, serialized, options)
results = c_api_util.ScopedTFImportGraphDefResults(results)
except errors.InvalidArgumentError as e:
# Convert to ValueError for backwards compatibility.
raise ValueError(str(e))
# Create _DefinedFunctions for any imported functions.
#
# We do this by creating _DefinedFunctions directly from `graph_def`, and
# adding them to `graph`. Adding an existing function to a TF_Graph is a
# no-op, so this only has the effect of updating the Python state (usually
# _DefinedFunction.add_to_graph also adds the function to the TF_Graph).
#
# TODO(skyewm): fetch the TF_Functions directly from the TF_Graph
# TODO(skyewm): avoid sending serialized FunctionDefs back to the TF_Graph
_ProcessNewOps(graph)
if graph_def.library and graph_def.library.function:
functions = function.from_library(graph_def.library)
for f in functions:
f.add_to_graph(graph)
# Treat input mappings that don't appear in the graph as an error, because
# they are likely to be due to a typo.
missing_unused_input_keys = (
c_api.TF_ImportGraphDefResultsMissingUnusedInputMappings_wrapper(
results.results))
if missing_unused_input_keys:
missing_unused_input_keys = [
compat.as_str(s) for s in missing_unused_input_keys
]
missing_keys = ', '.join(missing_unused_input_keys)
raise ValueError(
'Attempted to map inputs that were not found in graph_def: '
f'[{missing_keys}]')
if return_elements is None:
return None
else:
return _GatherReturnElements(return_elements, graph, results.results)