-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgradients_test.py
1824 lines (1503 loc) · 63.5 KB
/
gradients_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.gradients."""
import sys
import warnings
from absl.testing import parameterized
import numpy as np
from tensorflow.python.client import session
from tensorflow.python.eager import backprop
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function as framework_function
from tensorflow.python.framework import indexed_slices
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import test_ops
from tensorflow.python.framework import test_util
from tensorflow.python.framework.constant_op import constant
from tensorflow.python.layers import core as core_layers
from tensorflow.python.ops import array_grad # pylint: disable=unused-import
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import cond
from tensorflow.python.ops import control_flow_grad # pylint: disable=unused-import
from tensorflow.python.ops import custom_gradient
from tensorflow.python.ops import data_flow_grad # pylint: disable=unused-import
from tensorflow.python.ops import data_flow_ops # pylint: disable=unused-import
from tensorflow.python.ops import functional_ops # pylint: disable=unused-import
from tensorflow.python.ops import gradient_checker_v2
from tensorflow.python.ops import gradients
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import list_ops
from tensorflow.python.ops import math_grad # pylint: disable=unused-import
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_grad # pylint: disable=unused-import
from tensorflow.python.ops import ref_variable
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_grad # pylint: disable=unused-import
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import tensor_array_grad # pylint: disable=unused-import
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import unconnected_gradients
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variable_v1
from tensorflow.python.ops import variables
from tensorflow.python.ops import while_loop
from tensorflow.python.ops.nn_ops import bias_add
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.platform import googletest
from tensorflow.python.util import nest
class GradientsTest(test_util.TensorFlowTestCase, parameterized.TestCase):
def testGradients(self):
with ops.Graph().as_default():
inp = constant(1.0, shape=[32, 100], name="in")
w = constant(1.0, shape=[100, 10], name="w")
b = constant(1.0, shape=[10], name="b")
xw = math_ops.matmul(inp, w, name="xw")
h = bias_add(xw, b, name="h")
w_grad = gradients.gradients(h, w)[0]
self.assertEqual("MatMul", w_grad.op.type)
self.assertEqual(w_grad.op._original_op, xw.op)
self.assertTrue(w_grad.op.get_attr("transpose_a"))
self.assertFalse(w_grad.op.get_attr("transpose_b"))
def testUnusedOutput(self):
with ops.Graph().as_default():
w = constant(1.0, shape=[2, 2])
x = constant(1.0, shape=[2, 2])
wx = math_ops.matmul(w, x)
split_wx = array_ops.split(value=wx, num_or_size_splits=2, axis=0)
c = math_ops.reduce_sum(split_wx[1])
gw = gradients.gradients(c, [w])[0]
self.assertEqual("MatMul", gw.op.type)
def testColocateGradients(self):
with ops.Graph().as_default() as g:
w = constant(1.0, shape=[1, 1])
x = constant(1.0, shape=[1, 2])
with g.device("/device:GPU:0"):
wx = math_ops.matmul(w, x)
gw = gradients.gradients(wx, [w], colocate_gradients_with_ops=True)[0]
self.assertEqual(gw.op.colocation_groups(), wx.op.colocation_groups())
def testColocateGradientsWithAggregation(self):
with ops.Graph().as_default() as g:
with g.device("/device:GPU:1"):
w = constant(1.0, shape=[1, 1])
x = constant(1.0, shape=[1, 2])
y = constant(1.0, shape=[1, 2])
wx = math_ops.matmul(w, x)
wy = math_ops.matmul(w, y)
with g.device("/device:GPU:0"):
z = wx + wy
gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
self.assertEqual(gw1.op.colocation_groups(), wx.op.colocation_groups())
gw2 = gradients.gradients(z, [w], colocate_gradients_with_ops=False)[0]
self.assertNotEqual(wx.op.colocation_groups(), gw2.op.colocation_groups())
def testColocateGradientsWithAggregationInMultipleDevices(self):
with ops.Graph().as_default() as g:
with g.device("/device:GPU:1"):
w = constant(1.0, shape=[1, 1])
x = constant(1.0, shape=[1, 2])
y = constant(1.0, shape=[1, 2])
with g.device("/task:1"):
wx = math_ops.matmul(w, x)
with g.device("/task:2"):
wy = math_ops.matmul(w, y)
with g.device("/device:GPU:0"):
z = wx + wy
gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
self.assertEqual(gw1.op.colocation_groups(), w.op.colocation_groups())
gw2 = gradients.gradients(z, [w], colocate_gradients_with_ops=False)[0]
self.assertNotEqual(w.op.colocation_groups(), gw2.op.colocation_groups())
def testColocateGradientsWithGateGradients(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
with ops.Graph().as_default() as g:
with g.device("/device:CPU:0"):
x = constant(1.0, shape=[1, 1])
y = constant(1.0, shape=[1, 1])
s = x + y
with g.device("/device:GPU:0"):
z = math_ops.reduce_sum(s)
gz_x = gradients.gradients(z, [x], colocate_gradients_with_ops=True,
gate_gradients=True)[0]
# Make sure the placer doesn't complain.
self.evaluate(gz_x)
def testBoundaryStop(self):
# Test that we don't differentiate 'x'. The gradient function for 'x' is
# set explicitly to None so we will get an exception if the gradient code
# tries to differentiate 'x'.
with ops.Graph().as_default():
c = constant(1.0)
x = array_ops.identity(c)
y = x + 1.0
z = y + 1
grads = gradients.gradients(z, [x])
self.assertTrue(all(x is not None for x in grads))
@test_util.run_v1_only("b/120545219")
def testBoundaryContinue(self):
# Test that we differentiate both 'x' and 'y' correctly when x is a
# predecessor of y.
with self.cached_session():
x = constant(1.0)
y = x * 2.0
z = y * 3.0
grads = gradients.gradients(z, [x, y])
self.assertTrue(all(x is not None for x in grads))
self.assertEqual(6.0, grads[0].eval())
@test_util.run_v1_only("b/120545219")
def testAggregationMethodAccumulateN(self):
with self.cached_session():
x = constant(1.0)
y = x * 2.0
z = y + y + y + y + y + y + y + y + y + y
grads = gradients.gradients(
z, [x, y],
aggregation_method=gradients.AggregationMethod.
EXPERIMENTAL_ACCUMULATE_N)
self.assertTrue(all(x is not None for x in grads))
self.assertEqual(20.0, grads[0].eval())
self.assertEqual(10.0, grads[1].eval())
@test_util.run_v1_only("b/120545219")
def testAggregationMethodAddN(self):
with self.cached_session():
x = constant(1.0)
y = x * 2.0
z = y + y + y + y + y + y + y + y + y + y
grads = gradients.gradients(
z, [x, y], aggregation_method=gradients.AggregationMethod.ADD_N)
self.assertTrue(all(x is not None for x in grads))
self.assertEqual(20.0, grads[0].eval())
self.assertEqual(10.0, grads[1].eval())
@test_util.run_v1_only("b/120545219")
def testAggregationMethodTree(self):
with self.cached_session():
x = constant(1.0)
y = x * 2.0
z = y + y + y + y + y + y + y + y + y + y
grads = gradients.gradients(
z, [x, y],
aggregation_method=gradients.AggregationMethod.EXPERIMENTAL_TREE)
self.assertTrue(all(x is not None for x in grads))
self.assertEqual(20.0, grads[0].eval())
self.assertEqual(10.0, grads[1].eval())
def testNoGradientForStringOutputs(self):
with ops.Graph().as_default():
def _TestOpGrad(_, float_grad, string_grad):
"""Gradient function for TestStringOutput."""
self.assertEqual(float_grad.dtype, dtypes.float32)
self.assertFalse(string_grad)
return float_grad
ops.RegisterGradient("TestStringOutput")(_TestOpGrad)
c = constant(1.0)
x, _ = test_ops.test_string_output(c)
z = x * 2.0
w = z * 3.0
grads = gradients.gradients(z, [c])
self.assertIsInstance(grads[0], ops.Tensor)
grads = gradients.gradients(w, [c])
self.assertIsInstance(grads[0], ops.Tensor)
def testNoGradientForStringOutputsWithOpNamespace(self):
with ops.Graph().as_default():
def _TestOpGrad(_, float_grad, string_grad):
"""Gradient function for TestStringOutput."""
self.assertEqual(float_grad.dtype, dtypes.float32)
self.assertFalse(string_grad)
return float_grad
ops.RegisterGradient("Namespace>TestStringOutput")(_TestOpGrad)
c = constant(1.0)
x, _ = test_ops.namespace_test_string_output(c)
z = x * 2.0
w = z * 3.0
grads = gradients.gradients(z, [c])
self.assertIsInstance(grads[0], ops.Tensor)
grads = gradients.gradients(w, [c])
self.assertIsInstance(grads[0], ops.Tensor)
def testSingletonIndexedSlices(self):
with ops.Graph().as_default():
x = array_ops.placeholder(dtypes.float32)
y = array_ops.identity(x)
dy = indexed_slices.IndexedSlices(
array_ops.placeholder(dtypes.float32),
array_ops.placeholder(dtypes.int32))
dx, = gradients.gradients(y, x, grad_ys=dy)
# The IndexedSlices gradient of tf.identity is the identity map.
with self.cached_session() as sess:
vdx, vdy = sess.run(
[dx, dy], feed_dict={x: [1.0], dy.indices: [0], dy.values: [2.0]})
self.assertEqual(vdx, vdy)
@test_util.run_v1_only("b/120545219")
def testNonDifferentiableSwitchInWhileLoop(self):
with ops.Graph().as_default():
v = array_ops.placeholder(dtypes.float32, [])
def _Step(i, a, ta):
a += math_ops.cast(v, dtypes.int32)
return (i + 1, a, ta.write(i, a))
n = 4
i, _, ta = while_loop.while_loop(
lambda i, *_: i < n, _Step,
[0, 0, tensor_array_ops.TensorArray(dtypes.int32, size=n)])
target = ta.read(i - 1)
grad, = gradients.gradients(target, v)
self.assertIsNone(grad)
def testVariableReadValueGradient(self):
with ops.Graph().as_default():
init = constant_op.constant(100.0)
var = variables.Variable(init)
gradient = gradients.gradients(var.read_value(), var)
self.assertIsNotNone(gradient)
@parameterized.parameters(dtypes.float32, dtypes.float64)
def testVariableDefaultGrad(self, dtype):
with ops.Graph().as_default():
init = constant_op.constant(100.0, dtype=dtype)
var = variables.Variable(init)
dummy_const = constant_op.constant(0.0)
gradient = gradients.gradients(
dummy_const,
var,
unconnected_gradients=unconnected_gradients.UnconnectedGradients.ZERO
)[0]
self.assertEqual(gradient.dtype, dtype)
self.assertIsNotNone(gradient)
def testVariableAsGraphElementGradient(self):
with ops.Graph().as_default() as graph:
init = constant_op.constant(100.0)
var = variables.Variable(init)
gradient = gradients.gradients(graph.as_graph_element(var), var)
self.assertIsNotNone(gradient)
@test_util.run_v1_only("b/120545219")
def testVariableRefGradient(self):
with ops.Graph().as_default():
init = constant_op.constant(100.0)
var = variable_v1.VariableV1(init)
gradient = gradients.gradients(var._ref(), var)
self.assertIsNotNone(gradient)
@test_util.run_v1_only("b/120545219")
def testDependentYs(self):
with self.cached_session():
x = constant_op.constant(3.0)
y = math_ops.square(x)
y1 = math_ops.square(y)
y2 = math_ops.square(y1)
g = gradients.gradients([y, y2], x)
self.assertAllClose(17502.0, g[0])
g = gradients.gradients(y + y2, x)
self.assertAllClose(17502.0, g[0])
z = array_ops.identity(y)
z2 = array_ops.identity(y2)
g = gradients.gradients([z, z2], x)
self.assertAllClose(17502.0, g[0])
@test_util.run_v1_only("b/120545219")
def testPartialDerivatives(self):
with self.cached_session():
x = constant_op.constant(1.)
y = 2 * x
z = x + y
totalg = gradients.gradients(z, [x, y])
self.assertEqual([3.0, 1.0], [g.eval() for g in totalg])
partialg = gradients.gradients(z, [x, y], stop_gradients=[x, y])
self.assertEqual([1.0, 1.0], [g.eval() for g in partialg])
@test_util.run_v1_only("b/120545219")
def testStopGradients(self):
def _MakeGraph(rng, stop_gradients=()):
def _FunctionOf(xs, k=3):
return ops.convert_to_tensor(
sum(math_ops.matmul(rng.rand(k, k), x) for x in xs)
+ rng.rand(k, k))
a = _FunctionOf([])
if "a" in stop_gradients: a = array_ops.stop_gradient(a)
b = _FunctionOf([a])
if "b" in stop_gradients: b = array_ops.stop_gradient(b)
c = _FunctionOf([a, b])
if "c" in stop_gradients: c = array_ops.stop_gradient(c)
d = _FunctionOf([b, c])
if "d" in stop_gradients: d = array_ops.stop_gradient(d)
return dict(a=a, b=b, c=c, d=d)
def _Gradients(ys, xs, **kwargs):
dydxs = gradients.gradients(ys, xs, **kwargs)
dydxs = [0. * x if dydx is None else dydx
for x, dydx in zip(xs, dydxs)]
return dydxs
seed = np.random.randint(1000)
cases = []
subsets = [""] + "a b c d ab ac ad bc bd cd abc abd acd bcd abcd".split()
graph = _MakeGraph(np.random.RandomState(seed))
for constants in subsets:
graph_with_stops = _MakeGraph(np.random.RandomState(seed), constants)
for variables_ in subsets:
# compute the gradient when stopped using tf.stop_gradients
grad1 = _Gradients([graph_with_stops["d"]],
[graph_with_stops[v] for v in variables_])
# compute the gradient when stopped using the stop_gradients kwarg
grad2 = _Gradients([graph["d"]],
[graph[v] for v in variables_],
stop_gradients=[graph[v] for v in constants])
cases.append(dict(grad1=grad1, grad2=grad2,
constants=constants, variables=variables_))
# evaluate all tensors in one call to session.run for speed
with self.cached_session() as sess:
results = sess.run([(case["grad1"], case["grad2"]) for case in cases])
for (npgrad1, npgrad2), case in zip(results, cases):
for a, b in zip(npgrad1, npgrad2):
np.testing.assert_allclose(a, b)
def testUnconnectedGradientsNoneUnconnectedGradients(self):
with ops.Graph().as_default():
x = constant(1.0, shape=[2, 2])
y = constant(3.0, shape=[3, 1])
grad = gradients.gradients(
[y], [x], unconnected_gradients="none")
self.assertIsNone(grad[0])
def testUnconnectedGradientsZerosUnconnectedGradients(self):
with ops.Graph().as_default():
x = constant(1.0, shape=[2, 2])
y = constant(3.0, shape=[3, 1])
grads = gradients.gradients(
[y], [x], unconnected_gradients="zero")
self.assertAllEqual([[0.0, 0.0], [0.0, 0.0]], self.evaluate(grads)[0])
def testUnconnectedGradientsZeroConnectedGradients(self):
with ops.Graph().as_default():
x = constant(1.0)
y = x * 3.0
grad = gradients.gradients(
[y], [x], unconnected_gradients="zero")
self.assertEqual(3.0, self.evaluate(grad)[0])
def testUnknownUnconnectedGradientsValueGiven(self):
with ops.Graph().as_default():
x = constant(1.0)
y = constant(1.0)
with self.assertRaisesRegex(
ValueError, "Unknown value for unconnected_gradients: 'nonsense'"):
gradients.gradients([y], [x], unconnected_gradients="nonsense")
@parameterized.parameters(unconnected_gradients.UnconnectedGradients.ZERO,
unconnected_gradients.UnconnectedGradients.NONE)
def testUnconnectedOpWithMultipleOutputs(self, unconnected_gradients_val):
with ops.Graph().as_default():
# a b
# | |
# IdentityN
# | |
# c d
# |
# Identity
# |
# e
a = constant_op.constant(1.0)
b = constant_op.constant(1.0)
c, d = array_ops.identity_n([a, b])
e = array_ops.identity(c)
# The aggregated grads for the IdentityN node would look like
# [Tensor, None]. We expect this None to be converted to zeros.
output = gradients.gradients(
e, d, unconnected_gradients=unconnected_gradients_val)
if (unconnected_gradients_val ==
unconnected_gradients.UnconnectedGradients.ZERO):
self.assertIsNotNone(output[0])
else:
self.assertIsNone(output[0])
@parameterized.parameters(unconnected_gradients.UnconnectedGradients.ZERO,
unconnected_gradients.UnconnectedGradients.NONE)
def testUnconnectedOpWithMultipleOutputsStopGradient(
self, unconnected_gradients_val):
with ops.Graph().as_default():
# a b
# | |
# IdentityN
# | |
# c d
# | |
# SG |
# | |
# \ /
# +
# e
a = constant_op.constant(1.0)
b = constant_op.constant(1.0)
c, d = array_ops.identity_n([a, b])
e = array_ops.stop_gradient(c) + d
# The aggregated grads for the IdentityN node would look like
# [None, Tensor]. We expect this None to be converted to zeros.
output = gradients.gradients(
e, c, unconnected_gradients=unconnected_gradients_val)
if (unconnected_gradients_val ==
unconnected_gradients.UnconnectedGradients.ZERO):
self.assertIsNotNone(output[0])
else:
self.assertIsNone(output[0])
class FunctionGradientsTest(test_util.TensorFlowTestCase):
@classmethod
def XSquarePlusB(cls, x, b):
return x * x + b
@classmethod
def XSquarePlusBGradient(cls, x, b, g):
# Perturb gradients (multiply by 2), so we can test that this was called.
g *= 2.0
return g * 2.0 * x, g
@classmethod
def _PythonGradient(cls, op, grad):
# Perturb gradients (multiply by 3), so we can test that this was called.
grad *= 3.0
return grad * op.inputs[0] * 2.0, grad
@classmethod
def _GetFunc(cls, **kwargs):
return framework_function.Defun(dtypes.float32, dtypes.float32, **
kwargs)(cls.XSquarePlusB)
def _GetFuncGradients(self, f, x_value, b_value):
x = constant_op.constant(x_value, name="x")
b = constant_op.constant(b_value, name="b")
y = f(x, b)
grads = gradients.gradients(y, [x, b])
return self.evaluate(grads)
def testFunctionGradientsBasic(self):
g = ops.Graph()
with g.as_default():
f = self._GetFunc()
# Get gradients (should add SymbolicGradient node for function).
grads = self._GetFuncGradients(f, [2.0], [1.0])
self.assertAllEqual([4.0], grads[0])
self.assertAllEqual([1.0], grads[1])
def testFunctionGradientsComposition(self):
with ops.Graph().as_default():
f = self._GetFunc()
x = constant_op.constant([2.0], name="x")
b1 = constant_op.constant([1.0], name="b1")
b2 = constant_op.constant([1.0], name="b2")
y = f(f(x, b1), b2)
# Build gradient graph (should add SymbolicGradient node for function).
grads = gradients.gradients(y, [x, b1])
self.assertAllEqual([40.0], self.evaluate(grads)[0])
self.assertAllEqual([10.0], self.evaluate(grads)[1])
def testFunctionGradientsWithGradFunc(self):
g = ops.Graph()
with g.as_default():
grad_func = framework_function.Defun(dtypes.float32, dtypes.float32,
dtypes.float32)(
self.XSquarePlusBGradient)
f = self._GetFunc(grad_func=grad_func)
# Get gradients (should add SymbolicGradient node for function, which
# uses the grad_func above, which multiplies all gradients by 2).
grads = self._GetFuncGradients(f, [2.0], [1.0])
self.assertAllEqual([4.0 * 2], grads[0])
self.assertAllEqual([1.0 * 2], grads[1])
def testFunctionGradientWithRegistration(self):
g = ops.Graph()
with g.as_default():
f = self._GetFunc(python_grad_func=self._PythonGradient)
# Get gradients, using the python gradient function. It multiplies the
# gradients by 3.
grads = self._GetFuncGradients(f, [2.0], [1.0])
self.assertAllEqual([4.0 * 3], grads[0])
self.assertAllEqual([1.0 * 3], grads[1])
def testFunctionGradientWithGradFuncAndRegistration(self):
g = ops.Graph()
with g.as_default():
grad_func = framework_function.Defun(dtypes.float32, dtypes.float32,
dtypes.float32)(
self.XSquarePlusBGradient)
with self.assertRaisesRegex(ValueError, "Gradient defined twice"):
f = self._GetFunc(
grad_func=grad_func, python_grad_func=self._PythonGradient)
f.add_to_graph(ops.Graph())
def testGradientWrtCaptured(self):
with ops.Graph().as_default():
x = constant_op.constant(1.0, name="x")
@def_function.function
def Foo():
y = math_ops.multiply(x, 2.0, name="y")
g = gradients_impl.gradients(y, x)
return g[0]
f = Foo()
self.assertEqual(self.evaluate(f), 2.0)
def testGradientOfCaptured(self):
with ops.Graph().as_default():
x = constant_op.constant(1.0, name="x")
y = math_ops.multiply(x, 2.0, name="y")
@framework_function.Defun()
def Foo():
g = gradients_impl.gradients(y, x)
return g[0]
f = Foo()
self.assertEqual(self.evaluate(f), 2.0)
def testCapturedResourceVariable(self):
with ops.Graph().as_default():
var = resource_variable_ops.ResourceVariable(1.0, name="var")
@def_function.function
def Foo():
y = math_ops.multiply(var, 2.0, name="y")
g = gradients_impl.gradients(y, var)
return g[0]
f = Foo()
self.evaluate(variables.global_variables_initializer())
self.assertEqual(self.evaluate(f), 2.0)
def testCapturedNested(self):
with ops.Graph().as_default():
x1 = constant_op.constant(1.0, name="x1")
x2 = constant_op.constant(2.0, name="x2")
x3 = math_ops.multiply(x1, x2, name="x3")
@def_function.function
def Outer():
outer1 = array_ops.identity(x1, name="outer1")
@def_function.function
def Inner():
inner1 = array_ops.identity(outer1, name="inner1")
inner2 = array_ops.identity(x2, name="inner2")
inner3 = array_ops.identity(x3, name="inner3")
return gradients_impl.gradients([inner1, inner2, inner3, x1],
[x1, x2])
return Inner()
x1_grad, x2_grad = Outer()
# 1.0 + None + 2.0 + 1.0 = 4.0
self.assertEqual(self.evaluate(x1_grad), 4.0)
# None + 1.0 + 1.0 + None = 2.0
self.assertEqual(self.evaluate(x2_grad), 2.0)
def testCapturedFromFunction(self):
with ops.Graph().as_default():
x = constant_op.constant(1.0, name="x")
@def_function.function
def Outer():
y = math_ops.multiply(x, 2.0, name="y")
@def_function.function
def Inner():
z = math_ops.multiply(y, 3.0, name="z")
g = gradients_impl.gradients(z, y)
return g[0]
return Inner()
z_grad = Outer()
self.assertEqual(self.evaluate(z_grad), 3.0)
def testCapturedEagerTensors(self):
# Test that we can handle captured eager tensors unrelated to the gradient
# computation (i.e. we need to ignore them).
# TODO(skyewm): make it an error if you try to take the gradient wrt a
# captured EagerTensor
with context.eager_mode():
c = constant_op.constant(2.0, name="c")
@def_function.function
def Foo():
x = constant_op.constant(10.0, name="x")
y = math_ops.multiply(x, c, name="y")
# Regression test for b/122564611.
z = math_ops.multiply(c, y, name="z")
g = gradients_impl.gradients(z, x)
return g[0]
self.assertEqual(Foo().numpy(), 4.0)
class StopGradientTest(test_util.TensorFlowTestCase):
def testStopGradient(self):
with ops.Graph().as_default():
inp = constant(1.0, shape=[100, 32], name="in")
out = array_ops.stop_gradient(inp)
igrad = gradients.gradients(out, inp)[0]
assert igrad is None
class PreventGradientTest(test_util.TensorFlowTestCase):
def testPreventGradient(self):
with ops.Graph().as_default():
inp = constant(1.0, shape=[100, 32], name="in")
out = array_ops.prevent_gradient(inp)
with self.assertRaisesRegex(LookupError, "explicitly disabled"):
_ = gradients.gradients(out, inp)
class HessianVectorProductTest(test_util.TensorFlowTestCase):
@test_util.run_v1_only("b/120545219")
def testHessianVectorProduct(self):
# Manually compute the Hessian explicitly for a low-dimensional problem
# and check that HessianVectorProduct matches multiplication by the
# explicit Hessian.
# Specifically, the Hessian of f(x) = x^T A x is
# H = A + A^T.
# We expect HessianVectorProduct(f(x), x, v) to be H v.
m = 4
rng = np.random.RandomState([1, 2, 3])
mat_value = rng.randn(m, m).astype("float32")
v_value = rng.randn(m, 1).astype("float32")
x_value = rng.randn(m, 1).astype("float32")
hess_value = mat_value + mat_value.T
hess_v_value = np.dot(hess_value, v_value)
for use_gpu in [False, True]:
with self.cached_session(use_gpu=use_gpu):
mat = constant_op.constant(mat_value)
v = constant_op.constant(v_value)
x = constant_op.constant(x_value)
mat_x = math_ops.matmul(mat, x, name="Ax")
x_mat_x = math_ops.matmul(array_ops.transpose(x), mat_x, name="xAx")
hess_v = gradients_impl._hessian_vector_product(x_mat_x, [x], [v])[0]
hess_v_actual = self.evaluate(hess_v)
self.assertAllClose(hess_v_value, hess_v_actual)
class HessianTest(test_util.TensorFlowTestCase):
@test_util.run_v1_only("b/120545219")
def testHessian1D(self):
# Manually compute the Hessian explicitly for a low-dimensional problem
# and check that `hessian` matches. Specifically, the Hessian of
# f(x) = x^T A x is H = A + A^T.
m = 4
rng = np.random.RandomState([1, 2, 3])
mat_value = rng.randn(m, m).astype("float32")
x_value = rng.randn(m).astype("float32")
hess_value = mat_value + mat_value.T
with self.session():
mat = constant_op.constant(mat_value)
x = constant_op.constant(x_value)
x_mat_x = math_ops.reduce_sum(x[:, None] * mat * x[None, :])
hess = gradients.hessians(x_mat_x, x)[0]
hess_actual = self.evaluate(hess)
self.assertAllClose(hess_value, hess_actual)
@test_util.run_v1_only("b/120545219")
def testHessian1D_multi(self):
# Test the computation of the hessian with respect to multiple tensors
m = 4
n = 3
rng = np.random.RandomState([1, 2, 3])
mat_values = [rng.randn(m, m).astype("float32") for _ in range(n)]
x_values = [rng.randn(m).astype("float32") for _ in range(n)]
hess_values = [mat_value + mat_value.T for mat_value in mat_values]
with self.session():
mats = [constant_op.constant(mat_value) for mat_value in mat_values]
xs = [constant_op.constant(x_value) for x_value in x_values]
xs_mats_xs = [
math_ops.reduce_sum(x[:, None] * mat * x[None, :])
for x, mat in zip(xs, mats)
]
hessians = gradients.hessians(xs_mats_xs, xs)
hessians_actual = [hess.eval() for hess in hessians]
for hess_value, hess_actual in zip(hess_values, hessians_actual):
self.assertAllClose(hess_value, hess_actual)
@test_util.run_v1_only("b/120545219")
def testHessianInvalidDimension(self):
for shape in [(10, 10), None]:
with self.cached_session():
x = array_ops.placeholder(dtypes.float32, shape)
# Expect a ValueError because the dimensions are wrong
with self.assertRaises(ValueError):
gradients.hessians(x, x)
@test_util.run_v1_only("b/120545219")
def testHessian2D_square_matrix(self):
# Manually compute the Hessian explicitly for a low-dimensional problem
# and check that `hessian` matches. Specifically, the Hessian of
# f(x) = 1/2 * x^T * x is H = constant (block identity matrix)
m = 3
rng = np.random.RandomState([1, 2, 3])
x_value = rng.randn(m, m).astype("float32")
with self.session():
x = constant_op.constant(x_value)
x_square = math_ops.reduce_sum(
math_ops.matmul(array_ops.transpose(x), x) * 0.5
)
hess = gradients.hessians(x_square, x)[0]
hess_actual = self.evaluate(hess)
hess_value = np.bmat([
[elem*np.ones((m, m)) for elem in vec]
for vec in np.eye(m)
]).astype("float32")
self.assertAllEqual((m, m, m, m), hess_actual.shape)
self.assertAllClose(hess_value, hess_actual.reshape((m * m, m * m)))
@test_util.run_v1_only("b/120545219")
def testHessian2D_non_square_matrix(self):
m = 3
n = 4
rng = np.random.RandomState([1, 2, 3])
x_value = rng.randn(m, n).astype("float32")
with self.session():
x = constant_op.constant(x_value)
x_square = math_ops.reduce_sum(
math_ops.matmul(array_ops.transpose(x), x) * 0.5
)
hess = gradients.hessians(x_square, x)[0]
hess_actual = self.evaluate(hess)
hess_value = np.bmat([
[elem*np.ones((n, n)) for elem in vec]
for vec in np.eye(m)
]).astype("float32")
self.assertAllEqual((m, n, m, n), hess_actual.shape)
self.assertAllClose(hess_value, hess_actual.reshape((m * n, m * n)))
class IndexedSlicesToTensorTest(test_util.TensorFlowTestCase):
@test_util.run_v1_only("b/120545219")
def testIndexedSlicesToTensor(self):
with self.cached_session():
np_val = np.random.rand(4, 4, 4, 4).astype(np.float32)
c = constant_op.constant(np_val)
c_sparse = math_ops._as_indexed_slices(c)
self.assertAllEqual(np_val.shape, c_sparse.dense_shape)
c_dense = math_ops.multiply(c_sparse, 1.0)
self.assertAllClose(np_val, self.evaluate(c_dense))
@test_util.run_v1_only("b/120545219")
def testIndexedSlicesToTensorList(self):
with self.cached_session():
numpy_list = []
dense_list = []
sparse_list = []
for _ in range(3):
np_val = np.random.rand(4, 4, 4, 4).astype(np.float32)
c = constant_op.constant(np_val)
c_sparse = math_ops._as_indexed_slices(c)
numpy_list.append(np_val)
dense_list.append(c)
sparse_list.append(c_sparse)
packed_dense = array_ops_stack.stack(dense_list)
packed_sparse = array_ops_stack.stack(sparse_list)
self.assertAllClose(packed_dense, self.evaluate(packed_sparse))
@test_util.run_v1_only("b/120545219")
def testInt64Indices(self):
with self.cached_session():
np_val = np.random.rand(4, 4, 4, 4).astype(np.float32)
c = constant_op.constant(np_val)
c_sparse = math_ops._as_indexed_slices(c)
c_sparse = indexed_slices.IndexedSlices(
c_sparse.values,
math_ops.cast(c_sparse.indices, dtypes.int64), c_sparse.dense_shape)
self.assertAllEqual(np_val.shape, c_sparse.dense_shape)
c_dense = math_ops.multiply(c_sparse, 1.0)
self.assertAllClose(np_val, self.evaluate(c_dense))
@test_util.run_v1_only("b/120545219")
def testWarnings(self):
# TODO(gunan) Reenable after this issue is fixed:
# https://github.com/google/protobuf/issues/2812
if sys.version_info >= (3, 5):
self.skipTest("Skipped test for Python 3.5+")
# Smaller than the threshold: no warning.
c_sparse = indexed_slices.IndexedSlices(
array_ops.placeholder(dtypes.float32),
array_ops.placeholder(dtypes.int32), constant([4, 4, 4, 4]))
with warnings.catch_warnings(record=True) as w:
math_ops.multiply(c_sparse, 1.0)
self.assertEqual(0, len(w))
# Greater than or equal to the threshold: warning.
c_sparse = indexed_slices.IndexedSlices(
array_ops.placeholder(dtypes.float32),
array_ops.placeholder(dtypes.int32), constant([100, 100, 100, 100]))
# "always" filter prevents the warning from being suppressed if it was
# already triggered in a different test.
warnings.simplefilter("always")
with warnings.catch_warnings(record=True) as w:
math_ops.multiply(c_sparse, 1.0)
self.assertEqual(1, len(w))
self.assertIn(
"with 100000000 elements. This may consume a large amount of memory.",
str(w[0].message))
# Unknown dense shape: warning.
c_sparse = indexed_slices.IndexedSlices(
array_ops.placeholder(dtypes.float32),
array_ops.placeholder(dtypes.int32),
array_ops.placeholder(dtypes.int32))
with warnings.catch_warnings(record=True) as w:
math_ops.multiply(c_sparse, 1.0)
self.assertEqual(1, len(w))
self.assertIn(
"of unknown shape. This may consume a large amount of memory.",
str(w[0].message))
class OnlyRealGradientsTest(test_util.TensorFlowTestCase):
@test_util.run_v1_only("b/120545219")
def testRealOnly(self):
x = constant_op.constant(7+3j, dtype=dtypes.complex64)
y = math_ops.square(x)
with self.assertRaisesRegex(
TypeError, r"Gradients of complex tensors .* must set grad_ys "
r"\(y\.dtype = complex64\)"):
gradients.gradients(y, x)
class ResourceCondTest(test_util.TensorFlowTestCase):
@test_util.run_v1_only("b/120545219")
def testBasic(self):
gamma = resource_variable_ops.ResourceVariable(
np.random.random((3,)),
dtype="float32", name="gamma")
inputs = array_ops.ones(shape=(3,), dtype="float32")
def TestFn():
output = inputs + gamma
return output
training = array_ops.placeholder_with_default(True, shape=())
output = cond.cond(
training, TestFn, lambda: inputs)
loss = output
grads = gradients.gradients(
loss, [gamma])
self.assertNotIn(None, grads)
class GetDependentVariablesTest(test_util.TensorFlowTestCase):
def testNoVariables(self):
with ops.Graph().as_default():
func = lambda x: array_ops.identity(x) + 5.0
input_t = constant_op.constant(2.0)
result_t = func(input_t)
dependent_vars = custom_gradient._get_dependent_variables(
[input_t], [result_t])
# There are no variables.
self.assertEqual(dependent_vars, [])
def testVariablesOutside(self):
with ops.Graph().as_default():
init = constant_op.constant(100.0)
var = variables.Variable(init)
# The variable is closed over. It should be found.
func = lambda x: array_ops.identity(x) + 5.0 + var
input_t = constant_op.constant(2.0)
result_t = func(input_t)
dependent_vars = custom_gradient._get_dependent_variables(
[input_t], [result_t])
self.assertEqual(dependent_vars, [var])
def testVariableSamePrefix(self):
with ops.Graph().as_default():
var_name = "my_variable"
v_z = variable_scope.get_variable(var_name, shape=())
v_o = variable_scope.get_variable(var_name + "_ones", shape=())
# The variable is closed over. It should be found.
func = lambda x: array_ops.identity(x) + 5.0 + v_z + v_o
input_t = constant_op.constant(2.0)
result_t = func(input_t)
dependent_vars = custom_gradient._get_dependent_variables(
[input_t], [result_t])
self.assertEqual(set(dependent_vars), set([v_o, v_z]))
def testVariablesOutsideButDSeparated(self):