-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimage_grad.py
378 lines (329 loc) · 14.5 KB
/
image_grad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains Gradient functions for image ops."""
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import gen_image_ops
from tensorflow.python.ops import math_ops
@ops.RegisterGradient("ResizeNearestNeighbor")
def _ResizeNearestNeighborGrad(op, grad):
"""The derivatives for nearest neighbor resizing.
Args:
op: The ResizeNearestNeighbor op.
grad: The tensor representing the gradient w.r.t. the output.
Returns:
The gradients w.r.t. the input and the output.
"""
image = op.inputs[0]
if image.get_shape()[1:3].is_fully_defined():
image_shape = image.get_shape()[1:3]
else:
image_shape = array_ops.shape(image)[1:3]
grads = gen_image_ops.resize_nearest_neighbor_grad(
grad,
image_shape,
align_corners=op.get_attr("align_corners"),
half_pixel_centers=op.get_attr("half_pixel_centers"))
return [grads, None]
@ops.RegisterGradient("ResizeBilinear")
def _ResizeBilinearGrad(op, grad):
"""The derivatives for bilinear resizing.
Args:
op: The ResizeBilinear op.
grad: The tensor representing the gradient w.r.t. the output.
Returns:
The gradients w.r.t. the input.
"""
grad0 = gen_image_ops.resize_bilinear_grad(
grad,
op.inputs[0],
align_corners=op.get_attr("align_corners"),
half_pixel_centers=op.get_attr("half_pixel_centers"))
return [grad0, None]
@ops.RegisterGradient("ScaleAndTranslate")
def _ScaleAndTranslateGrad(op, grad):
"""The derivatives for ScaleAndTranslate transformation op.
Args:
op: The ScaleAndTranslate op.
grad: The tensor representing the gradient w.r.t. the output.
Returns:
The gradients w.r.t. the input.
"""
grad0 = gen_image_ops.scale_and_translate_grad(
grad,
op.inputs[0],
op.inputs[2],
op.inputs[3],
kernel_type=op.get_attr("kernel_type"),
antialias=op.get_attr("antialias"))
return [grad0, None, None, None]
@ops.RegisterGradient("ResizeBicubic")
def _ResizeBicubicGrad(op, grad):
"""The derivatives for bicubic resizing.
Args:
op: The ResizeBicubic op.
grad: The tensor representing the gradient w.r.t. the output.
Returns:
The gradients w.r.t. the input.
"""
allowed_types = [dtypes.float32, dtypes.float64]
grad0 = None
if op.inputs[0].dtype in allowed_types:
grad0 = gen_image_ops.resize_bicubic_grad(
grad,
op.inputs[0],
align_corners=op.get_attr("align_corners"),
half_pixel_centers=op.get_attr("half_pixel_centers"))
return [grad0, None]
@ops.RegisterGradient("CropAndResize")
def _CropAndResizeGrad(op, grad):
"""The derivatives for crop_and_resize.
We back-propagate to the image only when the input image tensor has floating
point dtype but we always back-propagate to the input boxes tensor.
Args:
op: The CropAndResize op.
grad: The tensor representing the gradient w.r.t. the output.
Returns:
The gradients w.r.t. the input image, boxes, as well as the always-None
gradients w.r.t. box_ind and crop_size.
"""
image = op.inputs[0]
if image.get_shape().is_fully_defined():
image_shape = image.get_shape().as_list()
else:
image_shape = array_ops.shape(image)
allowed_types = [dtypes.float16, dtypes.float32, dtypes.float64]
if op.inputs[0].dtype in allowed_types:
# pylint: disable=protected-access
grad0 = gen_image_ops.crop_and_resize_grad_image(
grad, op.inputs[1], op.inputs[2], image_shape, T=op.get_attr("T"),
method=op.get_attr("method"))
# pylint: enable=protected-access
else:
grad0 = None
# `grad0` is the gradient to the input image pixels and it
# has been implemented for nearest neighbor and bilinear sampling
# respectively. `grad1` is the gradient to the input crop boxes' coordinates.
# When using nearest neighbor sampling, the gradient to crop boxes'
# coordinates are not well defined. In practice, we still approximate
# grad1 using the gradient derived from bilinear sampling.
grad1 = gen_image_ops.crop_and_resize_grad_boxes(
grad, op.inputs[0], op.inputs[1], op.inputs[2])
return [grad0, grad1, None, None]
def _CustomReciprocal(x):
"""Wrapper function around `math_ops.div_no_nan()` to perform a "safe" reciprocal incase the input is zero. Avoids divide by zero and NaNs.
Input:
x -> input tensor to be reciprocat-ed.
Returns:
x_reciprocal -> reciprocal of x without NaNs.
"""
return math_ops.div_no_nan(math_ops.cast(1.0, x.dtype), x)
@ops.RegisterGradient("RGBToHSV")
def _RGBToHSVGrad(op, grad):
"""The gradients for `rgb_to_hsv` operation.
This function is a piecewise continuous function as defined here:
https://en.wikipedia.org/wiki/HSL_and_HSV#From_RGB
We perform the multivariate derivative and compute all partial derivatives
separately before adding them in the end. Formulas are given before each
partial derivative calculation.
Args:
op: The `rgb_to_hsv` `Operation` that we are differentiating.
grad: Gradient with respect to the output of the `rgb_to_hsv` op.
Returns:
Gradients with respect to the input of `rgb_to_hsv`.
"""
# Input Channels
reds = op.inputs[0][..., 0]
greens = op.inputs[0][..., 1]
blues = op.inputs[0][..., 2]
# Output Channels
saturation = op.outputs[0][..., 1]
value = op.outputs[0][..., 2]
dtype = op.inputs[0].dtype
# Mask/Indicator for max and min values of each pixel.
# Arbitrary assignment in case of tie breakers with R>G>B.
# Max values
red_biggest = math_ops.cast((reds >= blues) & \
(reds >= greens), dtype)
green_biggest = math_ops.cast((greens > reds) & \
(greens >= blues), dtype)
blue_biggest = math_ops.cast((blues > reds) & \
(blues > greens), dtype)
# Min values
red_smallest = math_ops.cast((reds < blues) & \
(reds < greens), dtype)
green_smallest = math_ops.cast((greens <= reds) & \
(greens < blues), dtype)
blue_smallest = math_ops.cast((blues <= reds) & \
(blues <= greens), dtype)
# Derivatives of R, G, B wrt Value slice
dv_dr = red_biggest
dv_dg = green_biggest
dv_db = blue_biggest
# Derivatives of R, G, B wrt Saturation slice
# The first term in the addition is the case when the corresponding color
# from (r,g,b) was "MAX"
# -> derivative = MIN/square(MAX), MIN could be one of the other two colors
# The second term is the case when the corresponding color from
# (r,g,b) was "MIN"
# -> derivative = -1/MAX, MAX could be one of the other two colours.
ds_dr = math_ops.cast(reds > 0, dtype) * math_ops.add(
red_biggest * math_ops.add(green_smallest * greens, blue_smallest * blues)
* _CustomReciprocal(math_ops.square(reds)), red_smallest * -1 *
_CustomReciprocal((green_biggest * greens) + (blue_biggest * blues)))
ds_dg = math_ops.cast(greens > 0, dtype) * math_ops.add(
green_biggest * math_ops.add(red_smallest * reds, blue_smallest * blues) *
_CustomReciprocal(math_ops.square(greens)), green_smallest * -1 *
_CustomReciprocal((red_biggest * reds) + (blue_biggest * blues)))
ds_db = math_ops.cast(blues > 0, dtype) * math_ops.add(
blue_biggest * math_ops.add(green_smallest * greens, red_smallest * reds)
* _CustomReciprocal(math_ops.square(blues)), blue_smallest * -1 *
_CustomReciprocal((green_biggest * greens) + (red_biggest * reds)))
# Derivatives of R, G, B wrt Hue slice
# Need to go case by case for each color.
# for red, dh_dr -> dh_dr_1 + dh_dr_2 + dh_dr_3 + dh_dr_4 + dh_dr_5
# dh_dr_1 ->
# if red was MAX, then derivative = 60 * -1 * (G-B)/square(MAX-MIN) == 60 *\
# -1 * (greens-blues) * reciprocal(square(saturation)) * \
# reciprocal(square(value))
# elif green was MAX, there are two subcases
# ie when red was MIN and when red was NOT MIN
# dh_dr_2 ->
# if red was MIN (use UV rule) -> 60 * ((1 * -1/(MAX-MIN)) +\
# (B-R)*(-1/square(MAX-MIN) * -1)) == 60 * (blues - greens) *\
# reciprocal(square(reds - greens))
# dh_dr_3 ->
# if red was NOT MIN -> 60 * -1/MAX-MIN == -60 * reciprocal(greens-blues)
# elif blue was MAX, there are two subcases
# dh_dr_4 ->
# if red was MIN (similarly use the UV rule) -> 60 * (blues - greens) *\
# reciprocal(square(blues - reds))
# dh_dr_5 ->
# if red was NOT MIN -> 60 * 1/MAX-MIN == 60 * reciprocal(blues-greens)
dh_dr_1 = 60 * (
math_ops.cast(reds > 0, dtype) * red_biggest * -1 *
(greens - blues) * _CustomReciprocal(math_ops.square(saturation)) *
_CustomReciprocal(math_ops.square(value)))
dh_dr_2 = 60 * (
math_ops.cast(greens > 0, dtype) * green_biggest * red_smallest *
(blues - greens) * _CustomReciprocal(math_ops.square(reds - greens)))
dh_dr_3 = 60 * (
math_ops.cast(greens > 0, dtype) * green_biggest * blue_smallest * -1 *
_CustomReciprocal(greens - blues))
dh_dr_4 = 60 * (
math_ops.cast(blues > 0, dtype) * blue_biggest * red_smallest *
(blues - greens) * _CustomReciprocal(math_ops.square(blues - reds)))
dh_dr_5 = 60 * (
math_ops.cast(blues > 0, dtype) * blue_biggest * green_smallest *
_CustomReciprocal(blues - greens))
dh_dr = dh_dr_1 + dh_dr_2 + dh_dr_3 + dh_dr_4 + dh_dr_5
# Converting from degrees to [0,1] scale as specified in
# https://www.tensorflow.org/api_docs/python/tf/image/rgb_to_hsv
dh_dr = dh_dr / 360
# for green, dh_dg -> dh_dg_1 + dh_dg_2 + dh_dg_3 + dh_dg_4 + dh_dg_5
# dh_dg_1 ->
# if green was MAX, then derivative = 60 * -1 * (B-R)/square(MAX-MIN) == 60 *\
# -1 * (blues - reds) * reciprocal(square(saturation)) * \
# reciprocal(square(value))
# elif red was MAX, there are two subcases ie
# when green was MIN and when green was NOT MIN
# dh_dg_2 ->
# if green was MIN (use UV rule) -> 60 * ((1 * 1/(MAX-MIN)) + \
# (greens-blues) * (-1/square(MAX-MIN) * -1)) == 60 * \
# ((reciprocal(reds-greens) + (greens-blues) * \
# reciprocal(square(reds-greens))))
# dh_dg_3 ->
# if green was NOT MIN -> 60 * 1/MAX-MIN == 60 * reciprocal(reds - blues)
# elif blue was MAX, there are two subcases
# dh_dg_4 ->
# if green was MIN (similarly use the UV rule) -> 60 * -1 * \
# (reciprocal(blues - greens) + (reds-greens)* -1 * \
# reciprocal(square(blues-greens)))
# dh_dr_5 ->
# if green was NOT MIN -> 60 * -1/MAX-MIN == -60 * reciprocal(blues - reds)
dh_dg_1 = 60 * (
math_ops.cast(greens > 0, dtype) * green_biggest * -1 *
(blues - reds) * _CustomReciprocal(math_ops.square(saturation)) *
_CustomReciprocal(math_ops.square(value)))
dh_dg_2 = 60 * (
math_ops.cast(reds > 0, dtype) * red_biggest * green_smallest *
(reds - blues) * _CustomReciprocal(math_ops.square(reds - greens)))
dh_dg_3 = 60 * (
math_ops.cast(reds > 0, dtype) * red_biggest * blue_smallest *
_CustomReciprocal(reds - blues))
dh_dg_4 = 60 * (
math_ops.cast(blues > 0, dtype) * blue_biggest * green_smallest *
(reds - blues) * _CustomReciprocal(math_ops.square(blues - greens)))
dh_dg_5 = 60 * (
math_ops.cast(blues > 0, dtype) * blue_biggest * red_smallest * -1 *
_CustomReciprocal(blues - reds))
dh_dg = dh_dg_1 + dh_dg_2 + dh_dg_3 + dh_dg_4 + dh_dg_5
# Converting from degrees to [0,1] scale as specified in
# https://www.tensorflow.org/api_docs/python/tf/image/rgb_to_hsv
dh_dg = dh_dg / 360
# for blue, dh_db -> dh_db_1 + dh_db_2 + dh_db_3 + dh_db_4 + dh_db_5
# dh_db_1 ->
# if blue was MAX, then derivative = 60 * -1 * (R-G)/square(MAX-MIN) == 60 *\
# -1 * reciprocal(square(saturation)) * reciprocal(square(value))
# elif red was MAX, there are two subcases
# ie when blue was MIN and when blue was NOT MIN
# dh_dg_2 ->
# if blue was MIN (use UV rule) -> 60 * ((1 * -1/(MAX-MIN)) + \
# (greens-blues) * (-1/square(MAX-MIN) * -1)) == 60 * (greens - reds) *\
# reciprocal(square(reds - blues))
# dh_dg_3 ->
# if blue was NOT MIN -> 60 * -1/MAX-MIN == 60 * -1 * \
# reciprocal(reds - greens)
# elif green was MAX, there are two subcases
# dh_dg_4 ->
# if blue was MIN (similarly use the UV rule) -> 60 * -1 * \
# (reciprocal(greens - blues) + (blues - reds) * -1 * \
# reciprocal(square(greens - blues)))
# dh_dr_5 ->
# if blue was NOT MIN -> 60 * 1/MAX-MIN == 60 * reciprocal(greens - reds)
dh_db_1 = 60 * (
math_ops.cast(blues > 0, dtype) * blue_biggest * -1 *
(reds - greens) * _CustomReciprocal(math_ops.square(saturation)) *
_CustomReciprocal(math_ops.square(value)))
dh_db_2 = 60 * (
math_ops.cast(reds > 0, dtype) * red_biggest * blue_smallest *
(greens - reds) * _CustomReciprocal(math_ops.square(reds - blues)))
dh_db_3 = 60 * (
math_ops.cast(reds > 0, dtype) * red_biggest * green_smallest * -1 *
_CustomReciprocal(reds - greens))
dh_db_4 = 60 * (
math_ops.cast(greens > 0, dtype) * green_biggest * blue_smallest *
(greens - reds) * _CustomReciprocal(math_ops.square(greens - blues)))
dh_db_5 = 60 * (
math_ops.cast(greens > 0, dtype) * green_biggest * red_smallest *
_CustomReciprocal(greens - reds))
dh_db = dh_db_1 + dh_db_2 + dh_db_3 + dh_db_4 + dh_db_5
# Converting from degrees to [0,1] scale as specified in
# https://www.tensorflow.org/api_docs/python/tf/image/rgb_to_hsv
dh_db = dh_db / 360
# Gradients wrt to inputs
dv_drgb = array_ops_stack.stack(
[grad[..., 2] * dv_dr, grad[..., 2] * dv_dg, grad[..., 2] * dv_db],
axis=-1)
ds_drgb = array_ops_stack.stack(
[grad[..., 1] * ds_dr, grad[..., 1] * ds_dg, grad[..., 1] * ds_db],
axis=-1)
dh_drgb = array_ops_stack.stack(
[grad[..., 0] * dh_dr, grad[..., 0] * dh_dg, grad[..., 0] * dh_db],
axis=-1)
gradient_input = math_ops.add(math_ops.add(dv_drgb, ds_drgb), dh_drgb)
return gradient_input